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Abstract 

A variations optimization technique is developed to acquire an optimal schedule 

of pulsed pumping operations for use at existing pump-and-treat aquifer remediation 

sites.   The optimization problem is stated as a minimization of a generic management 

objective  functional,  constrained  by the contaminant transport  equations  in  two- 

dimensional or three-dimensional flow models which account for rate-limited sorption. 

The two-dimensional case is fully developed and a first-order rate equation is used to 

describe the transport of sorbing contaminant.   The first variation provides necessary 

optimality conditions that must be met by any optimal solution, in turn leading to a pulsed 

pumping schedule of operation.  The second variation provides necessary and sufficient 

optimality conditions that characterize the solution as minimal, maximal, or neither. 

General classes of functional* are examined to determine the types of objectives which 

can be achieved. Specific examples are presented to demonstrate how to use the method 

in conjunction with a numeric flow simulation, such as SUTRA. 

IX 



OPTIMAL PULSED PUMPING FOR 

REMEDIATION OF AQUIFERS WHEN 

SORPTION IS RATE-LIMITED 

/. Introduction 

1.1       Background 

Groundwater is the main source of drinking water in many regions throughout the 

world.   Although groundwater accounts for only 0.61 percent of the earth's total water 

supply (22% of the land-based water), nearly 53 percent of all Americans obtain their 

drinking water from groundwater supplies (Fetter, 1993:1).  As much as we depend on 

groundwater for public use, agricultural irrigation    creates the largest demand on 

groundwater supplies - approximately three times as much as consumed by the general 

population (Bedient et al., 1994:3). Obviously, groundwater is a critical natural resource. 

The ecology movement of the 1970s brought to the view of the nation the great 

atrocities taking place on our lakes and waterways. "Lake Erie was pronounced dead, the 

Cyahoga River was so polluted it caught on fire, and sewage from 50 million people 

across the country was discharged into our waterways with little or no treatment" 

(Masters, 1991:101).   The newly formed Environmental Protection Agency (EPA) was 

charged with the responsibility of maintaining and protecting the quality of our water 

supply, to include both surface waters and subsurface aquifers. Through legislation such 



as the Clean Water Act of 1970, and the allocation of billions of dollars for wastewater 

treatment grants, the control of surface water pollution has been largely achieved. 

However, the discovery of numerous hazardous waste sites throughout the country began 

a new age of problems concerning the nation's water supplies. Through years of abuse, 

both intentional and unintentional, many subsurface aquifers are now contaminated in 

much the same way as the lakes and rivers of the 1970s. Many sources contribute to the 

contamination problem; including, among others, leaking underground storage tanks, 

landfills, waste-disposal injection wells, septic systems, agricultural wastes, and 

radioactive contaminants (Bedient et al.,1994:Ch 4). See Figure 1 for mechanisms of 

groundwater contamination. 

Mu ii in pul 
water wo 

Fresh 
„water 

Saline 
water item I ' Lateral • 

intrusion of 
saline water 

Septic lank 
drain field 

Brine leakage ^B 
\ from ruptured 

\well casing 

Infiltration of Accidental 
deicing chemicals    spill 
from roadways 
and pesticides 
and fertilizers 
from farmlands 

Municipal 
landfill 

Water table 

Infiltration 
of chemical 
wastes from 
landfill 

m "   Leaking 
petroleum 
lank 

Contaminated 
shallow 
well 

Figure 1. Mechanisms of groundwater contamination. (Source: Fetter, 1993:17). 



Research by groundwater scientists and engineers has led to a number of 

techniques to assist in both remediation and containment of groundwater contamination. 

Motivated by EPA mandates such as the Resource Conservation and Recovery Act 

(RCRA) and the Comprehensive Environmental Response, Compensation, and Liability 

Act (CERCLA), efficient aquifer cleanup remains an intense area of research. In general, 

the remediation of a site must address two major issues: source-control measures and 

treatment of contaminated groundwater and/or soil (Fetter, 1993:392). 

Assuming that the source of the contamination has been removed, then the 

problem reduces to treating the groundwater/soil in order to remove or greatly reduce the 

contaminant concentration. Generally accepted remediation alternatives for subsurface 

contamination problems include: 

1. Excavation and disposal of contaminated soil. 

2. Containment with physical barriers. 

3. Pumped removal of contaminated water and above ground treatment. 

4. In situ biological or chemical treatment. 

5. Soil vapor extraction. 

Although the above list is not exhaustive, it represents the most prevalent and successful 

techniques currently being applied at hazardous-waste sites around the country (Bedient 

et al, 1994:421). 

The third alternative listed above is commonly referred to as pump-and-treat 

remediation. Although pump-and-treat water extraction is the most commonly used 

remedial technology (Charbeneau et al., 1992:4), this method has failed to fully remediate 



any contaminated aquifer (Travis & Doty, 1990:1465). Additionally, the concentration of 

contaminant in the extracted water often decreases over time and asymptotically 

approaches a residual level in the latter stages of remediation (Keely et al., 1987:91). 

This phenomena is known as tailing. Furthermore, in some cases concentration levels 

may increase after the cessation of pumping (Mackay & Cherry, 1989:633). This 

rebound effect can be attributed to the sorption of contaminants to the aquifer solids that 

often desorb into the aquifer years after the site has been declared safe. This 

sorption/desorption phenomena is referred to as rate-limited sorption. Often, sorbed 

contaminant mass may be on the same order or greater than the contaminant mass 

dissolved in the aquifer (Mackay & Cherry, 1989:632). 

Volatile organic compounds (VOCs) are one of the most common health- 

threatening chemicals encountered at hazardous waste sites, including those which fall 

within the responsibility of the Air Force Installation Restoration Program (IRP). The 

advantage of pump-and-trcat methods at sites that contain VOCs is that conventional 

methods of water treatment can be employed to remediate the aquifer. The treated water 

can then be discharged to a surface-water body, sent to a wastewater treatment plant for 

further treatment, or reinjected into the ground (Fetter, 1993:401). In the foreseeable 

future, pump-and-treat facilities will continue to operate at VOC contaminated sites. 

With this prediction in mind, extensive research efforts are in place to design optimal 

remediation strategies for effective and efficient cleanup operations. Optimization 

techniques are being applied to mathematical models which simulate contaminant 

transport at remediation sites. The results of these efforts will determine well location and 



pumping rates at new cleanup sites, as well as optimal pumping schedules at existing 

sites. 

1.2      Research Objectives 

This work develops a mathematical tool incorporating contaminant transport 

(affected by rate-limited sorption) with a variational optimization technique to determine 

an optimal pulsed pumping schedule for use at an existing pump-and-treat cleanup 

facility. Typically, pump-and-treat groundwater remediation designs are based on trial 

and error simulations. Feasible combinations of pump locations and pumping rates are 

examined and the final design of the well-field is based on the designer's best guess. 

Such an approach is unlikely to be optimal (Culver & Shoemaker, 1992:629). With so 

many of these types of facilities already in place, the economic impact of completely 

redesigning these remediation projects may not be acceptable. However, the possibility 

of mathematically optimizing the operation of the existing facility (i.e., adjustment of 

pumping schedules, minor alterations in pump placement) to get the 'best bang for the 

buck,' could result in a significant cost reduction of Air Force and Department of Defense 

(DOD) remediation budgets. 

For example, the impetus of this research is the IRP site at Tinker Air Force Base 

(AFB) Oklahoma, which is located within the recharge area of the Central Oklahoma 

aquifer. Since the early 1940s, industrial practices related to aircraft maintenance 

operations in building 3001 have resulted in contamination of surface soils and 

groundwater beneath and adjacent to the building. Numerous compounds including both 



volatile organics and inorganic metals have been detected in the groundwater. Among 

these contaminants, trichloroethylene (TCE) and chromium (Cr) are the most pervasive 

with TCE being detected at concentrations greater than 300 ppm and Cr registering 

greater than 50 ppm (Battelle, 1995). Under the direction of the IRP, the Air Force 

constructed and began operation of a groundwater treatment facility in 1993. The pump- 

and-treat system consists of an extraction well-field comprised of 33 wells, five of which 

are horizontal, and an on-site treatment facility which treats the water to drinking water 

standard quality for reuse within building 3001. With the scheme currently in place, the 

contamination plume has been contained to a 200 acre area, approximately 200 feet 

below the building. Under current management plans, this operation will continue 

indefinitely at an operation and maintenance cost of roughly $900,000 annually. 

Additionally, Tinker AFB is just one of more than 1300 sites on the EPA's National 

Priorities List (NPL). If the current cleanup methods are going to be continued in the 

future, optimization of pumping schedules for cost effectiveness is critical. 

The ultimate goal of this research is to develop an optimal pumping schedule for a 

hypothetical aquifer that will maximize the amount of contaminant removed while 

minimizing the cost of operating and maintaining the pumping equipment. The approach 

employs calculus of variations to optimize a general objective functional, constrained by 

the contaminant transport equations and a first-order sorption equation. With this generic 

approach, entire classes of functionals are examined to establish necessary and sufficient 

conditions for the existence of extrema. 



Hartman (1994) used this methodology to establish proof of the concept in a one 

dimensional, radially symmetric model when contaminant transport was affected by rate- 

limited sorption. Hartman's work was unique in its approach to the optimization 

problem, in that no one had ever applied variational principles to determine if an optimal 

pulsed pumping schedule was attainable. However, his limiting assumptions greatly 

simplified the problem, creating an isolated and restricted case. In turn, these restrictions 

limited the scope of his conclusions. The present work examines the problem in a general 

geometry that provides a more realistic representation of the physical properties 

associated with the aquifer. Thus, this work removes the idealized geometry 

assumptions, and develops the theory with the mathematical rigor which Hartman's work 

lacked. 

1.3      Relevant Terminology 

Some of the significant terms used in association with contaminant transport and 

aquifer remediation are listed below. Unless otherwise noted, they are definitions 

prescribed by the EPA (U.S. EPA, 1993). 

1. Advection: the process whereby solute is transported by the bulk mass of flowing 

fluid. 

2. Aquifer: a geologic unit that contains sufficient saturated permeable material to 

transmit significant quantities of water. 

3. Cleanup: the attainment of a specified contaminant concentration level (Goltz and 

Oxley, 1991:547). 



4. Concentration Gradient: difference in concentration values that produces movement 

of a contaminant from a region of higher concentration to one of lower concentration 

(Freeze and Cherry, 1979:25). 

5. Desorption Process: sorbed solutes reenter the aqueous phase. 

6. Diffusion: mass transfer as a result of random motion of molecules. 

7. Dispersion: the spreading and mixing of the contaminant in ground water due to 

variations in velocities within and between pores. 

8. Effective Porosity: the ratio, usually expressed as a percentage, of the total volume of 

voids available for fluid transmission to the total volume of the porous medium. 

9. Extraction Well: a pumped well used to remove contaminated groundwater. 

10. Heterogeneous aquifer media: a geologic unit in which the hydrologic properties 

vary from point to point. 

11. Homogeneous aquifer media: a geologic unit in which the hydrologic properties arc 

identical from point to point. 

12. Pulsed Pumping: a pump-and-trcat enhancement where extraction wells are 

periodically not pumped to allow concentrations to increase in the water to be extracted. 

13. Rebound: increase in contaminant concentration in the ground water that is observed 

due to desorption (Adams and Viramontes, 1989:1-4). 

14. Retardation: the movement of a solute through a geologic medium at a velocity less 

than that of the flowing groundwater due to sorption or other removal of the solute. 

15. Sorption: processes that remove solutes from the fluid phase and concentrate them 

on the solid phase of a medium. 



16. Tailing: the slow, nearly asymptotic decrease in contaminant concentration in water 

flushed through contaminated material. 

1.4      Overview 

This document consists of eight chapters. Chapter II presents a review of the 

current literature associated with optimization of groundwater remediation. The literature 

review is comprised of two sections addressing two distinct areas of interest: optimal 

management of groundwater remediation facilities and optimal design of such facilities. 

The first section discusses current literature that supports the use of pulsed pumping as an 

optimization tool. The second section contains a review of other research efforts 

currently in place which use formal optimization techniques to design groundwater 

remediation sites. 

Chapter in develops the general optimization problem and formally states the 

problem as a minimization of an objective functional constrained by a system of partial 

differential equations, initial conditions, and boundary conditions. The optimization 

procedure is also outlined, and the chapter includes a number of relevant definitions and 

theorems from the classical theory of the calculus of variations. Specifically, this chapter 

establishes the connection between the first and second variation with the necessary and 

sufficient conditions for the existence of an extremum. 

Chapter IV explores the first variation of the Lagrangian of the problem presented 

in the preceding chapter. Basically, the Lagrangian combines the functional in question 

with the constraints of the problem to define a new functional. When an optimal solution 



is found from the first and second variation of the Lagrangian, the solution also optimizes 

the original functional. In this chapter, a number of necessary conditions are derived 

from the first variation of the Lagrangian which reduces to a set of n-1 equations that 

must be satisfied to establish n-1 times to cycle (turn off or turn on) the single extraction 

pump. These times represent the candidate optimal solution. That is, once we verify the 

solution yields a minimum for a given functional, the optimal times define the best pulsed 

pumping schedule to attain the objectives described by the original functional. 

More necessary conditions are obtained through analysis of the second variation 

of the Lagrangian and are presented in Chapter V. As anyone with knowledge of basic 

calculus and the second derivative test might expect, the necessary conditions derived 

from the second variation are inequality conditions which determine whether the 

candidate solution is a maximum, a minimum, or neither. 

In Chapter VI, several definitions and theorems are presented, leading to a 

theorem which establishes a set of conditions, both necessary and sufficient for the 

existence of a minimum solution. 

General classes of functionals are examined in Chapter VII, and a demonstration 

of the technique is also presented. By examining classes of functionals, we can determine 

the nature of the types of objectives that can be optimized. It turns out that some 

objective functionals have no optimal solution with regard to a pulsed pumping scheme. 

For a specific functional that has an optimal solution, a modified version of the public 

domain United States Geological Survey Saturated Unsaturated Transport (SUTRA) code 

that incorporates rate-limited sorption was used to generate concentration information at 

10 



the extraction well in a two-dimensional aquifer model (Caspers, 1994). This 

information was then used to determine the optimal times to switch from the pumping 

cycle to the resting cycle (and vice versa). 

Finally, Chapter VIII summarizes the results of this research, and presents 

suggestions for further projects in this area. 

11 



//. Literature Review 

In this chapter, the current remediation optimization literature is reviewed. Two 

distinct areas of interest are presented: optimal management of remediation facilities and 

optimal design of pump-and-treat cleanup sites. Pulsed pumping has been suggested as a 

possible optimization tool for existing pump-and-treat facilities, and the literature 

presented in the next section supports this theory. Section 2.2 examines the task of 

designing optimal pump-and-treat facilities with regard to pump placement and pumping 

rates, and the literature discusses a number of interesting possibilities. 

2.1       Optimal Pump-and-treat Management Strategies 

2.1.1 Introduction. Approximately two-thirds of the existing EPA Supcrfund 

groundwater contamination sites are currently being cleaned by pump-and-treat 

technology. Yet, not a single aquifer in the United States has ever been successfully 

restored by this method (Travis & Doty, 1990:1465). Cleanup objectives have not been 

reached, and the time needed to meet health-based requirements for groundwater quality 

appears to be much greater than originally anticipated. Numerous ongoing research 

efforts (Kuo et al., 1992; Harvey et al., 1994; Rogers & Dowla, 1994; Rogers et al, 1995) 

are attempting to address the problems associated with these lengthy aquifer cleanup 

times. Pump-and-treat methodology has been under great scrutiny, and most of the 

research has attempted to gain a better understanding of the method and its limitations, as 

well as alternative remedial strategies (Rabideau & Miller, 1994:1458). 

12 



A number of factors contribute to the lengthy cleanup times encountered by 

pump-and-treat systems, but the primary hindrance can be attributed to the presence of 

contaminant in soil regions which are not easily accessed by the flow fields generated 

during pumping (Rabideau & Miller, 1994:1457). Specifically, if contaminant is sorbed 

to the soil in the aquifer and mass transfer of contaminant between the soil and water is 

rate-limited, then the solute is considerably more difficult to remove. 

One reason removal rates and remediation times are so poorly estimated is that 

most existing mathematical models assume instantaneous equilibrium between aqueous 

and sorbed contaminant. This local equilibrium assumption (LEA) asserts that, during 

pumping, sorbed contaminant instantaneously desorbs into the clean water that moves 

through the aquifer as contaminated water is removed. Depending upon the 

characteristics of both the contaminant and the soil, the LEA could be completely invalid, 

greatly increasing the expected time to remediate a contaminated aquifer, as predicted by 

the model (Goltz, 1991:25). Additionally, tailing and rebound are attributed in part to 

mass transfer rate limitations such as rate-limited sorption (Mackay & Cherry, 1989). 

Thus, the LEA could cause a significant miscalculation of groundwater cleanup times if 

rate-limited sorption/desorption is significant. 

2.1.2 Pulsed Pumping. To address the problems associated with rate-limited 

sorption, Keely et al. (1987) proposed a groundwater management optimization scheme 

in which an intermittent or pulsed method of operation is used, in lieu of operating the 

extraction and injection pumps continuously. During pulsed operation, the hydraulic well 

system is cycled through a period of 'resting' and 'active' phases, i.e., the pumps are 

13 



turned on and off. Theoretically, resting modes of operation allow sorbed contaminant to 

diffuse into the more mobile regions, resulting in higher contaminant concentrations in 

the groundwater when the pumps are turned on (active). Since treatment costs vary 

directly with the amount of water pumped, the most efficient operation should remove the 

minimum amount of contaminated groundwater at the maximum level of contaminant 

concentration during the active cycle (Keely et al., 1987:99). Since operation of a 

remediation site could last decades, any pumping schedule that maximizes the amount of 

contaminant removed while minimizing the amount of water treated would result in 

substantial cost savings in operation budgets. 

Huso (1989) developed a one-dimensional numerical model that incorporated 

rate-limited sorption based on a radially symmetric domain. His results verified the 

findings of Mackay and Cherry (1989), clearly demonstrating that cessation of pumping 

before a significant decrease of contaminant concentration levels in the immobile region 

resulted in the rebound effect previously noted. Huso recognized that pulsed pumping 

could address the rebound problem, but did not attempt to find an optimal pumping 

schedule. 

Borden and Kao (1992) developed a mathematical model to simulate a 

groundwater extraction system for remediation of petroleum-contaminated aquifers. 

Continuous pump-and-treat methods are mostly ineffective when the source of 

contamination is a non-aqueous phase liquid (NAPL), such as petroleum (Malone et al, 

1993:2203). NAPL contamination displays the same long rate of dissolution as rate- 

limited sorption in soils.  Borden and Kao conducted simulations to evaluate the effects 

14 



of pulsed pumping in a NAPL contaminated aquifer. They developed a numerical model 

to compare three remediation alternatives: constant pumping rate, reduced pumping rate, 

and a pulsed pumping strategy. To examine the effects of pulsed pumping, they used a 

somewhat arbitrary schedule of pumping: pump at a constant rate for the first four years 

and then use a pulsed pumping schedule broken into one year increments for the next six 

years. They made no attempt to use mathematical optimization analysis to arrive at an 

optimal pumping schedule for the pump switching times. The conclusions of their 

research indicated that pulsed pumping resulted in a greater reduction in the contaminant 

concentration, however the total water volume treated appeared to be the same as in the 

constant pumping alternative. Borden and Kao's results demonstrated a potential for 

improved efficiency by using pulsed pumping, but without attempting to find an optimal 

pumping schedule they may have been pumping during periods when the pumps really 

should have been off; resulting in a less efficient pumping alternative. One disadvantage 

of pulsed pumping was pointed out to be the operational problems associated with 

restarting the pumping equipment. 

Adams and Viramontes (1993) developed an analytical model of contaminant 

transport affected by rate-limited sorption. Their solution used a Green's 

function/Laplace transform approach to analytically solve the contaminant transport 

equations. They tested their model on a hypothetical aquifer and compared continuous 

pumping at a constant rate with a pulsed pumping schedule. As was the case with Borden 

and Kao, switching times for cycling the pump off and on were dictated arbitrarily (100 

days on, 100 days off intervals for 400 days). Adams and Viramontes demonstrated that 

15 



pulsed pumping was more efficient than continuous pumping in terms of contaminant 

removed per treated water volume. Again, the results were rather crude, since they made 

no attempt to find an optimal pumping schedule. 

Gorelick et al. (1993) specifically addressed the problem of optimizing the 

remediation of groundwater contamination sites.   A number of design strategies were 

examined as well as techniques which could be used at existing pump-and-treat facilities. 

The authors recognized the attractive possibilities of using a pulsed pumping schedule 

rather than a continuous-on pumping approach: 

Systematic methods for the design of pulsed-pumping networks are now 
becoming available. Ultimately, such methods may allow for the optimal 
design of pumping-rate schedules and pump/rest cycles for complex well 
networks, but at the present time a more operational approach must be 
followed (Gorelick et al, 1993:226). 

Basically, the operational approach referred to above is to monitor the water quality of the 

plume as remediation proceeds, then when the concentration falls and approaches a 

relatively low constant value, the pumps are turned off and the operator then waits for 

rebound to occur before restarting the pumps. However, the authors point out that even 

though pulsed pumping has a tremendous potential to minimize the cost of operating a 

pump-and-treat facility, there may be extraneous costs associated with shutting the pumps 

down periodically. Specifically, resting periods may induce the need for peripheral 

gradient measures to ensure hydrodynamic control of the plume, resulting in added costs 

to the remediation project. 

Voudrias and Yeh (1994) investigated the factors affecting the dissolution of a 

toluene pool by constructing an experimental aquifer 85 cm long, 30 cm high, and 20 cm 
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wide. Steady-state concentration data for the aquifer was predicted by a two-dimensional 

advection-transverse dispersion model. They concluded pulsed pumping was more 

efficient than continuous pumping, as indicated by a 20% increase in mass removed per 

unit of water pumped and a 50% reduction in the volume of water pumped. However, 

their research suggested longer removal times, since a lower total mass was removed by 

pulsed pumping when compared with continuous pumping. The authors also pointed out 

that under low NAPL mass transfer limit conditions, due to the slow diffusion from the 

immobile regions, it may be possible to optimize the zero flow period. That is, a pulsed 

schedule could be developed to determine the optimal switching times resulting in higher 

contaminant mass removal and lower water volume extracted for treatment (Voudrias & 

Yeh, 1994:311). They also state that pumping and nonpumping periods can only be 

optimized through a trial-and-error operation, measuring the benefits with respect to 

plume containment. 

Rabideau and Miller (1994) pointed out that very little quantitative data exists to 

support the conceptual theories of many alternative pump-and-treat strategies. They 

sought to develop efficient simulation models to accurately represent the principle flow, 

transport, and reaction processes influencing pump-and-treat remediation. In turn, they 

could then focus on evaluating the feasibility of alternative pumping strategies. They 

developed models incorporating LEA and rate-limited assumptions for a radially 

symmetric domain. After studying pulsed pumping in the rate-limited cases, they 

concluded that pulsed pumping increased cleanup time but this increase was offset by the 

improvement in remediation efficiency.   After many simulations in which alternative 
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pumping cycles were introduced, they concluded that the best results were obtained with 

short pumping cycles. Additionally, they demonstrated that layered heterogeneity was 

very significant for pump-and-treat performance, which indicated that rebound and tailing 

could be observed to some extent even in the absence of rate-limited sorption. 

Harvey et al. (1994) compared pulsed and continuous pumping at the design stage 

of a remediation facility, and clearly demonstrated that pulsed pumping was no more 

efficient than continuously pumping at a constant rate. However, they additionally 

investigated the possibility of implementing a pulsed pumping schedule at working 

remediation systems in order to optimize their operation, and concluded that a pulsed 

pumping schedule could be designed to remove the same amount of contaminant as a 

continuous pumping approach. By reducing overall pumping time, a savings in treatment 

costs could be realized at most sites. 

In summary, the authors mentioned in this section recognized the potential benefit 

of pulsed pumping as an optimization tool, particularly when sorption was rate-limited. 

However, their investigations of pulsed pumping schedules used arbitrary or trial-and- 

error methods to explore that potential, rather than an analytical optimization techniq 

2.1.3 Optimal Pulsed Pumping. While others have examined the feasibility 

pulsed pumping through experiment and simulation, only Hartman (1994) attempted 

use mathematical analysis to develop a pulsed pumping schedule, and he proved 

theoretically that an optimal schedule is obtainable on an idealized, radially symmetric 

geometry. Hartman depicted a hypothetical aquifer using a contaminant transport model 

affected by rate-limited sorption. He used variational calculus to optimize a generic 

lue. 

of 

to 
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objective functional and determined necessary and sufficient optimality conditions to 

obtain the best pulsed pumping schedule for a specific cleanup objective. Although his 

research was noteworthy, in that he attempted to find an optimal schedule through a 

mathematical technique, he limited his efforts to a very simple component of a much 

more complex problem. The present research also uses a variational optimization 

technique, but in a much more general setting that realistically models an actual pump 

and treat remediation site. This generalized approach led to a more thorough and rigorous 

analysis of the problem, in turn establishing necessary and sufficient optimality 

conditions which are applicable at working remediation sites. Since Hartman's work was 

unique in its approach to optimal pump management, a brief summary of his work is 

presented here and will be referenced later in this document as a special case of the 

current research. 

Hartman's work extended the efforts of Huso (1989), Goltz & Oxley (1991), and 

Adams & Viramontes (1993). Following Goltz & Oxley (1991), Hartman described 

contaminant transport by a steady, converging radial flow field resulting from advection 

created by a single extraction well. He ignored contaminant transport due to a natural 

groundwater gradient, and he considered the hydraulic head to be constant throughout the 

aquifer, thus ignoring drawdown due to pumping. Contamination was radially symmetric 

throughout the vertical extent of the aquifer and a full penetrating extraction well was 

placed in the center of the contaminated region. Hartman considered a single, infinite 

aquifer of constant thickness bounded below by a horizontal aquitard and assumed no 

other   external   sources   or   sinks   of   the   pollutant.      He   modeled   rate-limited 
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sorption/desorption between regions of mobile and immobile water by use of a first-order 

differential equation. Finally, he assumed the pumping schedule was piecewise constant 

on a fixed, finite time interval and he investigated only one pulsed pumping cycle, as 

shown in Figure 2. 

Figure 2. One cycle of a piecewise constant pumping schedule 
on a fixed time interval. 

With these assumptions, Hartman formalized the pulsed pumping optimization 

problem as a minimization problem for a generic dimensionless objective functional, 

J[Q,Cm] , subject to the constraints posed by the contaminant transport equations and the 

geometry of the aquifer domain as follows: 

•   Minimize J[Q,Cr f •'A 
f(T,Q(T),Cm(Xw,T))dT (1) 

over the piecewise constant set of functions S = {Q:[0,Tfinal] -> {0,Qmax} and Q is 

piecewise constant}, where Cm, Q, Xw, and T are dimensionless variables that represent 

concentration in the mobile zone, extraction well pumping rate, coordinate location of the 
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well, and time, respectively. The integrand f given in equation (1) was intentionally left 

generic to let an aquifer manager choose the desired objective functional (i.e., f might be 

chosen to maximize contaminant mass removed while minimizing the mass of water 

removed, or some other management goal) defined over a finite time interval, [0, Tfmai]. 

•   Subject to the constraints 

3Cra(X,T)    fQ(T)    j32Cm(X,T)   (Q(T)    DVCm(X,T)    n3Cim(X,T) 

3T I  X 
-+D ax2 -+ x'+x 3X    -V^IE^  <2) 

and 

9Cim(X,T) 
3T 

= a[Cm(X,T)-Cim(X,T)] (3) 

where Cim represents the dimensionless concentration in the immobile zone, and D, a, 

and ß are dimensionless constants. The initial conditions were specified as 

CB(X,0) = CniO(X) = - 
1      for      Xw < X < X» 

0     for       X, <X<°° 
(4) 

and 

Cim(X,0) = Cim,o(X) = ' 
[1      for      X„<X<X» 

lo     for       X, <X<°° 
(5) 

where X* was some finite. radius which defined the contaminated region.   Also, the 

boundary conditions were defined as 

21 



ax 

ax 

-KT) + CmKT)=0     and    CmKT) = 0    for all    Te [0,Tfmal] (6) 

(oo,T) + CmKT) = 0     and    CimKT)=0    for all    Te [0,Tfmal]. (7) 

At this point, Hartman applied the classical calculus of variations approach (see, 

for example, Gelfand & Fomin (1963)), and arrived at necessary and sufficient optimality 

conditions for the first and second variations of the functional in (1). His work is 

summarized by the following theorems: 

Theorem (Necessary Optimality Conditions for the First Variation). Let J[Q, Cm] be the 

functional given by equation (1), constrained by the partial differential equations, 

boundary conditions, and initial conditions given in (2) through (7), and assume that f has 

continuous first and second partial derivatives for all its variables on [0, Tfinai] ■ Define 

Q(T) = i 

0<T<T1 

T1<T<T2 

T, <T<Tfi final 

and 

C^X^T) 

Cm(Xw,T)Jc!;'(Xw,T) 
^(3) IQ;'(XW,T) 

0 < T < T, 

T1<T<T2 

T2<T<Tfinal 

If the functions (Q,Cm) produce an extremal for the functional in (1) constrained by (2) 

through (7), then 

-c|i)(xw,fo|^[f1,i,c«(xw,fj]+cL2)(xw,fo^[f1ÄC(
m

2)(xwff1)] = o 
3C 

and 
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f[f2,o,c™(xw,i2)]-f[f2,i,c™(xw,f2)] 

-c»(xw,T2)f[f2,o,c»(xw,f2)]+c<:(xw,f2)|^[f2,i,cS>(xw,fI)]=o(9) 

must hold, where % and % represent the optimal pump switching times produced by the 

functions (Q,Cm). 

With the initial assumption of only one cycle of pulsed pumping, % was the 

optimal time to turn the pump off and f2 was the optimal time to turn the pump back on. 

Additionally, Q(T) = 1 means the pump is on and Q(T) = 0 means the pump is off. 

Finally, note that c£>(Xw,T1) denotes the concentration observed at the well at the 

instant the pump is turned off, and C^ (Xw ,f2) denotes the concentration observed at the 

well at the instant the pump is turned back on. 

Theorem (Necessary Optimality Conditions for the Second Variation). Define J[Q, Cm], 

Q(T), and Cm(Xw, T) as in the previous theorem. If the functions (Q,CJ produce an 

extremal for the functional in (1) constrained by (2) through (7), then 

^[T,Q(T),Cm(Xw,T)]>0 (10) 

forallTs[0,Tfmal],and 

-cL2)(xw,ii-^[iPo^^ 
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(11) 

and 

|;[f3>0,C»(X.,f2)]-|[f2,l,CL«(Xw,f2)] 

f    32f ?2f 3C(2) 1 
+cL2)(xw,f2)j-^[f2,o,c^^ 

-C^(Xw,T2){-^[f2,^^ 
(12) 

must hold, where % and % represent the optimal pump switching times produced by the 

functions (Q,Cra). 

Theorem (Sufficient Optimality Conditions for the Second Variation). If the functions 

(Q,Cm) are an extremal for the functional given by equation (1), constrained by the 

partial differential equations, boundary conditions, and initial conditions given in (2) 

through (7) (that is, equations (8) and (9) are satisfied), and 

ilf 

forallTe[0,TfinaI], 

-[T,Q(T),Cm(Xw,T)]>0 (13) 

§[f1,l,CU)(Xwff1)]-|;[f1,0,CL2,(Xw,f1)] 

^«)(Xw,f1){-^[fpl,Cli>(Xw,fj]-0[f1J,C«(Xw,f1)]^(Xw,f1)l aiacL l    m    w  'J  ac2L !'   m    w' 1J 3T 

•^[tACl^X^f^l-^ItACL^X^t)]^ -C(
m

2)(Xw,Tl) -^[f1,0,C^(Xw,f1)]-^[fI,0,C[n
2)(Xw,f1)]-p(Xw,fl)   >0 

(14) 

and 
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^;[f2)0,CL2)(Xw,f2)]-|;[f2,l,C^(Xw,f2)] 

+cL2)(xw,f2)|-^[f2AcL2)(xw,f2)]-^[f2AcL2)(xw)f2)]^(xw)f2)| 

-^[T2.1.C2)(Xw,ta)]-^[f24,C?(Xw,f2)]-^(Xw,f2)|>0 

(15) 

then the functional in (1), constrained by (2) through (7), has a minimum at (Q,Cm). 

Equations (8) through (15) provided the tools to develop an optimal pulsed 

pumping schedule, under the assumptions listed. Once a quantity to be minimized had 

been selected, the specific objective could be modeled by the functional of equation (1) 

and these equations were then applied to derive the desired pumping schedule. With 

discrete values of the concentrations found from some model, equations (8) and (9) could 

be used to find candidate times % and f2 which provided an optimal solution. Equations 

(10) through (15) could then be applied to verify the solution was indeed a minimum. 

Despite Hartman's simplifying assumptions that idealized the problem and the 

fact that he never actually applied his results to a nontrivial example, his work 

demonstrated the potential for this approach in a more general setting. The present work 

provides the analysis of the more general problem and demonstrates that Hartman's work 

serves as a special case of the general problem. 

2.1.4 Summary. In this section of the literature review, an alternative 

groundwater management strategy known as pulsed pumping was examined. Although a 

number of researchers have examined the concept of pulsed pumping, very little 

mathematical analysis has been presented to substantiate the claim that intermittent 
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pumping could be used to optimize the remediation of contamination sites. While others 

have used "best-guess" optimization techniques to determine optimal on/off pump 

cycling times, only Hartman (1994) has actually sought to use a mathematical technique 

to truly find a best pumping schedule. 

Whereas very little mathematical analysis has been applied to the pulsed 

pumping/scheduling concept, extensive research has been conducted to examine the 

feasibility of designing optimal pump-and-treat systems (assuming pump placement as a 

variable). A detailed examination of some of these ideas follows in the next section. 

2.2       Optimal Pump-and-treat Design Strategies 

2.2.1 Introduction. Optimization techniques have been applied to groundwater 

management to address both quantity of groundwater availability and quality of the 

groundwater purity. In his review of groundwater management modeling methods, 

Gorelick (1983) pointed out that although a number of methods had been used to 

optimize groundwater quantity, the task of applying optimization to groundwater quality 

models was much more formidable. The mathematical and computational complexity of 

the large systems of nonlinear equations generally associated with flow and contaminant 

transport models contributes to the difficulty of the optimization problem. Unfortunately, 

the simplifying assumptions needed to eliminate these nonlinearites usually limits the 

accuracy and usefulness of the transport model (Culver & Shoemaker, 1992:629). 

In the early days of groundwater remediation, the most effective techniques in use 

were designed to contain a contaminant plume and prevent its migration into regional 
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groundwater supplies until remediation strategies could be developed. In the past ten 

years, a great deal of the research effort aimed at optimizing the pump-and-treat 

remediation method has been geared toward designing optimal cleanup facilities, 

addressing well placement and pumping rate selection techniques that will ultimately 

extract the contaminant plume. Although the research presented in this document 

focused on optimal pump scheduling, for completeness this section of the literature 

review will examine some of the techniques currently being explored to design efficient 

systems for management of groundwater quality. 

2.2.2 Optimal Design of Pump-and-treat Sites. Initially, mathematical 

optimization was used to minimize pumping during containment of the contamination 

plume. These early plume management strategies included constraints on heads, 

gradients, and flow velocities, but they failed to account for concentration or cleanup 

time (Greenwald & Gorelick, 1989:74). Eventually, researchers recognized the need to 

find efficient ways to actually remediate contaminated aquifers. 

Lefkoff and Gorelick (1985) designed a groundwater model that linked flow 

simulation and mathematical optimization. The purpose of their research was to 

determine if an optimal design criteria could be established to meet a target cleanup date. 

They examined a hypothetical aquifer which fixed the locations of the extraction and 

injection wells, and examined the effects of varying the pumping rates of each. Their 

remediation goal was to completely restore a contaminated aquifer in a four year period, 

and they determined the cost impact associated with such a time constraint. The desired 

objective was to minimize variable pumping costs, and the model they developed used a 
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response matrix technique. The model identified sets of decisions on pumping and 

injection rates, thus satisfying velocity constraints at the plume perimeter, as well as head 

constraints at pumping and injection sites. Their results clearly demonstrated the expense 

of rapid restoration, but their study also served to demonstrate the usefulness of a 

groundwater simulation-optimization model. In their work, Lefkoff and Gorelick 

examined the effects of varying a continuous pumping schedule and did not address the 

possibility of an optimal schedule through pulsed pumping. 

Ahlfeld et al. (1988) conducted a two-part study that explored groundwater 

remediation through the use of simulation, optimization, and sensitivity theory. In the 

first part, they proposed two nonlinear optimization formulations which modeled the 

design of an aquifer cleanup system to decide the location and pump rates for an 

extraction/injection well-field. Their model combined optimization with a two- 

dimensional Galerkin finite element model to simulate steady state groundwater flow and 

transient convectivc-dispersive transport. The discrete concentration levels from this 

model served as the input to the optimization problem. The formulations were designed 

to find the optimal pumping configuration to either remove the most contaminant over a 

fixed time interval or to reach a specified contaminant level at the least cost. The discrete 

objective functions they used were constrained by a variety of physical and economic 

limitations, where the end product could either: (1) select a pumping strategy to minimize 

the total amount of contaminant in an aquifer after a set time period, or (2) meet some 

prescribed EPA standard with a minimum cost. With these tools in place, the next part of 

their study dealt with a real-life application of their findings.   Ahlfeld et al. (1988) 
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demonstrated the validity of the model by investigating a series of hypothetical 

remediation design problems applied to a simplified field scale model of the Superfund 

site at Woburn, Massachusetts. Through the use of their optimization algorithm, they 

determined remediation strategies which satisfied specific design criteria. Additionally, 

their methods were found to produce engineering design information not available by any 

other method of analysis. 

Greenwald and Gorelick (1989) investigated the adverse effects associated with 

implementing a rapid aquifer restoration project. Their contaminant transport model was 

extremely simplified; basing transport travel time purely on advective flow. They utilized 

an existing quasi-analytical solution for this model in combination with nonlinear 

optimization to determine pumping and injection rates. The discrete objective function 

they minimized could represent any function of pumping rates, injection rates, and 

cleanup time. Applying their technique, they demonstrated the importance of cleanup 

time as a management consideration at the design stage of an aquifer restoration system. 

Also, they concluded that increased pumping rates could result in increased cleanup 

times, thereby driving remediation costs higher. Unfortunately, the simplicity of the flow 

model greatly limited its usefulness. 

Ahlfeld & Sawyer (1990) developed simulation and optimization techniques to 

determine optimal well locations. Their work was similar to that done by Lefkoff & 

Gorelick (1985), except that in their approach, Ahlfeld and Sawyer (1990) allowed for 

explicit control of groundwater velocity direction and magnitude, whereas Lefkoff and 

Gorelick proposed that the flow system was constrained by requirements  on the 
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groundwater velocity. This difference allowed the user the flexibility of specifying the 

exact direction of the velocity vector in a particular finite element. Optimization was 

accomplished through the use of a two-dimensional simulation model of groundwater 

flow and contaminant transport. The solution of this model was generated using linear 

quadrilateral finite elements, and the solution data was then used to generate the response 

matrix. In turn, the equations produced by this matrix served as constraints to a linear 

program algorithm. The major advantage of this technique was that the response matrix 

was structured, reducing computational and storage requirements significantly. Using 

this approach on a hypothetical aquifer, Ahlfeld and Sawyer demonstrated that providing 

a greater choice of well locations produced as much as a 37% reduction in pumping costs, 

illustrating the importance of careful selection of well position in an aquifer cleanup site. 

Dougherty and Marryott (1991 & 1993) and Kuo et al. (1992) independently 

investigated groundwater remediation design problems by applying the method of 

simulated annealing. Simulated annealing is a random-search technique that offers some 

advantages over continuous optimization techniques. These advantages include the 

ability to handle nonsmooth objective functions and the computational savings of not 

requiring functional gradients. However, the methods chief disadvantage is that only a 

limited number of pumping rates can be considered in the optimization (Xiang et al., 

1995:172). In both of their approaches, potential well locations discretely defined and 

extraction pumping rates continuously defined were both treated as discrete combinatorial 

variables. Dougherty and Marryott (1991 & 1993) sought to develop two different 

optimization formulations; the first sought to reduce contaminant concentrations while 
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the second sought to contain a contaminant plume. The first formulation produced a 

solution that reduced pumping costs, while the second was computationally more 

effective. Kuo et al. (1992) had similar optimization formulations, and of particular 

interest, they chose 'bang-bang'- like controls (i.e. pump on, pump off) to determine 

optimal pump-and-treat strategies for groundwater remediation. Both groups 

demonstrated success with the simulated annealing model, but there focus was on pump 

placement. They also acknowledged the limitations due to the stochastic nature of 

simulated annealing. 

Rogers, Dowla, and Johnson have recently generated a series of papers (Rogers & 

Dowla, 1994; Rogers, et al., 1995; and Johnson & Rogers, 1995) that explored a new 

approach to nonlinear groundwater management methodology. They sought to optimize 

aquifer remediation with the aid of artificial neural networks (ANNs). With the use of 

ANN technology, they found that solute transport simulations could be am in parallel 

thus achieving super-computer speed on conventional work stations. Optimal 

groundwater management solutions were found by training an ANN to predict the 

outcome of a two-dimensional hybrid finite-difference/finite-element flow and transport 

code, and then they used the trained network to search through many possible pumping 

alternatives to find an optimal realization for successful remediation. Back propagation 

was used to train the network, and the conjugate gradient method was used to speed 

convergence. A simple genetic algorithm directed the search, and the results were 

consistent with those found from the more conventional optimization technique of 

nonlinear programming with a quasi-Newton search (Rogers & Dowla, 1994:457). 
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Johnson and Rogers (1995) applied the neural network technique to optimal pump 

location analysis at a western Superfund site. After extensive characterization and 

analysis of the site, a 28-location pump-and-treat extraction/injection system was believed 

to be capable of containing and remediating the contamination within 50 years. The 

proposed management objective was to obtain the lowest cost subset of these 28 locations 

which could contain the contamination and extract the same mass of contaminant as the 

full 28-location strategy in the 50 year period. ANNs were trained by the 2-D SUTRA 

model to predict mass extraction and contamination information. Then, the networks 

examined over 4 million possible pump location patterns to identify 250 which met 

restoration goals at minimum cost. Sensitivity analysis was then used to sift through 

these 250 alternatives and evaluate the optimization results. The primary gain achieved 

through the use of ANNs was the speed at which alternative strategies could be 

examined; almost a million times faster than using the original SUTRA model to examine 

all 4 million patterns. 

Ahlfeld et al. (1995) applied a hydraulic control optimization model to a 

groundwater remediation system at a Superfund site in coastal New Jersey. They 

proposed an application of a simulation/optimization approach to an actual field site that 

uses optimization throughout the design process. With this approach, the system designer 

could assess the feasibility of certain management concepts and prepare the final design 

based on close interaction with the decision makers. Specifically, the management 

problem they addressed was to devise a remediation strategy that will capture a large 

volume of contaminant mass while allowing recharge of all extracted and treated water to 
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the subsurface. The data obtained from the optimization formulation was used to 

determine the feasibility of the recharge concept given the complex hydraulic constraints 

associated with the site. Additionally, the formulation was used to analyze the pumping 

strategy to determine the most practical way to implement the design under realistic 

conditions. This study demonstrated the importance of incorporating optimization at 

every stage of the design phase. 

2.2.3 Summary. A great deal of research has been conducted that addresses the 

problem of optimizing groundwater quality. This section of the literature review 

examined a few of the techniques currently being used to design optimal pump-and-treat 

remediation systems. Typically, the models used to simulate contaminant transport have 

been a simplified advection model or advection-dispersion equations with no accounting 

for the possible effects of rate-limited sorption or layered heterogeneity. Additionally, 

mathematical optimization methods have mostly been applied at the design stage; 

searching for optimal pump placement and flow rates. 

2.3       Conclusion 

This chapter presented the current literature dealing with optimization techniques 

applied to managing pump-and-treat groundwater cleanup facilities as well as those 

techniques used to optimally design such facilities. Specifically, pulsed pumping was 

presented as an alternative to continuous pumping at existing locations as a method for 

optimizing the operation of a site.    Additionally, the literature clearly indicated that 
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during the design stage of a pump-and-treat cleanup facility, pulsed pumping is no more 

efficient than continuously pumping at a constant rate. 

The research presented in this document will present an optimization procedure 

which, when applied at an existing pump-and-treat site, can be used to design an optimal 

pumping schedule for the pumps already in place. The procedure applies variational 

calculus to a functional on either a two- or three-dimensional domain (independent of the 

choice of coordinate system), constrained by the physical properties which limit 

contaminant transport and non-equilibrium sorption. 

The next chapter of this document highlights the variational methodology which 

led to an optimal pulsed pumping solution. The chapter includes a statement of the 

optimization problem as well as the pertinent theory behind the classical calculus of 

variations approach, including definitions and theorems that guarantee an optimal 

solution. 
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777. Variational Methodology 

3.1       Introduction and Overview 

Costs to remediate contaminated aquifers have continued to escalate, and an 

effective cleanup methodology remains nonexistent. The prevalent technology of pump- 

and-treat provides for the containment of contaminant but this method could take 50 years 

or longer to completely restore a site to an environmentally sound condition. With the 

prospect of spending billions of dollars on restoration, researchers have investigated the 

possibility of improving the efficiency of pump-and-treat system design and operation. 

One such cost-cutting measure that has been proposed calls for intermittent pumping that 

allows desorption of contaminant from less mobile regions into more mobile regions 

during idle pump periods, resulting in reduced operating costs. The work presented in 

this document developed a mathematical tool which incorporated contaminant transport 

within a variational optimization technique to obtain an optimal pulsed pumping schedule 

at an existing pump-and-lrcat cleanup site. Specifically, application of variational 

calculus established necessary and sufficient conditions for the existence of an optimal 

pumping schedule. 

The preceding chapters indicated support for pulsed pumping as a means to 

optimize operating efficiency of many restoration sites. Hartman's work (1994) proved 

that optimization could be achieved in an idealized, radially symmetric aquifer by use of a 

calculus of variations technique. In the present work, the variational technique was used 
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to prove that necessary and sufficient optimality conditions existed on two- and three- 

dimensional aquifer domains, with more realistic assumptions. 

The remainder of this chapter presents an overview of the analysis developed in 

the following chapters. The next section lists the assumptions made in the transport 

model and presents the governing equations for advective-dispersive transport, coupled 

with a first-order sorption model. These equations serve as constraints to the 

optimization problem, as stated in section 3.3. Section 3.4 states the pertinent theorems 

and definitions needed in the analysis that follows. Finally, section 3.5 summarizes a 

plan of attack for this research that pursues the theory presented in 3.4. 

3.2       Governing Equations 

The following physical assumptions were used to develop the transport model: 

1. A single extraction well was assumed to create a steady state flow field. Additionally, 

this single extraction well served as the contaminant concentration observation point 

during the analysis. Assuming a single extraction well simplified the analysis and if 

we assume the pumps in a well field operate independently, the procedure could 

easily be extended to a multiple pump system. 

2. The confined aquifer and the contaminated region were assumed to have a general 

rectangular geometry in two and three dimensions (i.e. not radially symmetric), and 

the media was assumed heterogeneous and isotropic. Also, initial and boundary 

conditions reflected this general geometry. 
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3. No external contaminant sources or sinks were present, thus a finite initial 

concentration level was assumed. 

4. A piecewise constant, pulsed pumping schedule was assumed on a fixed, finite time 

interval, [0, tf], that allowed for 'n' on/off intervals of varying length (see Figure 3.). 

5. Rate-limited sorption/desorption was modeled within the aquifer with a first-order 

rate equation (van Gemachten and Wierenga, 1976; Goltz and Oxley, 1991). As 

observed in the literature review, many researchers link pulsed pumping strategy with 

rate-limited sorption, although similar benefits may result in extremely heterogeneous 

aquifers (Rabideau and Miller, 1994:1457). 

These flow and transport assumptions are typical for many remediation problems. 

Later analysis showed, however, that many of these assumptions could be relaxed within 

the variational approach. Since the necessary and sufficient optimality conditions only 

required knowledge of the concentration at the observation well, any general transport 

model that incorporates first-order rate-limited sorption would be suitable. 

The equations for advective-dispersive contaminant transport, coupled with the 

first-order rate expression are written as 

f = V.(Dh.VO-V.(vc)-ir! (16) 

and 

3s 
3t 

= a(Kdc-s), (17) 
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Figure 3. Piecewise constant pulsed pumping schedule on a fixed, 
finite time interval with n intervals of variable length. 

where c(x,t) is the contaminant concentration of the water phase [M/L3], s(x,t) is the 

sorbed contaminant concentration [dimensionless], x is a rectangular coordinate point [L], 

t is time [T], PB is the bulk density [M/L3], 6 is the porosity of the water phase 

[dimensionless], a is a first-order rate constant IT1], Ka is a distribution coefficient 

[L3/M], Dh is the hydrodynamic dispersion tensor [L2/T], given for isotropic media in 

two dimensions as 

Dh = 
aL|v| + D* 0 

0 odv| + D*_ 
(18a) 

and in three dimensions as 

Dh = 

aJvl + D' 0 0 
0 aT|v| + D* 0 

0 o aT|v| + D* 

(18b) 
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where ccL and aT are the longitudinal and transverse dispersivities of the porous medium, 

respectively [L], D* is the molecular diffusion coefficient [L2/T], and |v| is the magnitude 

of the fluid velocity vector v [L/T], determined by the head equation given as 

v = 4KVh, (19) 
0 = 

where K is the hydraulic conductivity tensor of the medium [L/T] and h is the hydraulic 

head [L]. 

The advection-dispersion model (16) presented by Bear and Verruijt (1987:Ch 6) 

will be used throughout this document.  For the purpose of this research, a very general 

transport model would be sufficient, but the model depicted by (16) and (17) was chosen 

because it was common in the literature and it made the analysis easier to follow. 

Additionally, the model equations also account for the effects of rate-limited dcsorption 

of contaminant between the sorbed and aqueous phases. The coupled equations, (16) and 

(17), describe the transport process and provide the partial differential equations for the 

boundary-value  problem   (BVP)   which  constrains   the  objective  functional   of  the 

optimization problem (section 3.3). The boundary conditions for the BVP are 

(Dh'Vc)-n = 0 on  Bw (20a) 

and 

(vc-Dh'Vc)-n = 0 on   Bd, (20b) 
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where Bw is the boundary of the extraction well and Bd is the boundary of the aquifer 

domain. Notice, the dimension for the geometry of the domain is left arbitrary to this 

point. The boundary condition in (20a) implies that the concentration at the well does not 

change due to hydrodynamic dispersion and (20b) is the zero flux condition at the 

boundary of the aquifer. Finally, the initial conditions are expressed as 

c(x,0) = c0(x) (21a) 

and 

s(x,0) = s0(x), (21b) 

where c0 and s0 are the initial contaminant concentrations in the aqueous and solid phases 

at any point x throughout the domain of the aquifer, denoted in general as D. 

In the statement of the optimization problem, the transport equations stated in (16) 

and (17) will be treated as finite subsidiary conditions (constraints) imposed on the 

admissible functions for which the stated objective functional has an extremum. As such, 

the constraints are less cumbersome when combined into a single equation. Thus, 

introducing the integrating factor eat into equation (17), an expression for the sorbed 

concentration is found as 

s(x,t) = e-ats0(x)+aKde-atlo
tc(x,t)eaMT. (22) 

Combining equations (16), (17), and (22) and denoting the partial derivative of the 

(       dc^ 
concentration with respect to time as a subscript t C' = * 

, then we have 

40 



pBaKd      pBa _at 

V(D   •Vc)-V-(vc)-ilLr-lc+   a   e    S°(x) 
=h 0 ü (23) 

pB«
2Kd      tJt        )gaMt_     =0 

3.3       Optimization Problem Statement 

With the derivation of equation (23), the optimization problem can now be stated: 

Minimize J[Q,c] =  H   f(t,Q(t),c(x,t),ct(x,t))dBwdt (24) 
J0   "B. 

constrained by the boundary value problem, satisfying the integro-differential equation 

pBocKd      pBa _ 
V-(Dh-Vc)-V-(vc)-i^-±c + r|-ems0(x) 

PBO%      J«        )e«xdT_       0 

(25) 

in D x [0, tf], with the boundary conditions given as 

(D   -Vc)-n = 0 on   Bw (26a) 

(vc-D  -Vc)-n = 0 on   Bd, (26b) 

and the initial conditions given as 

c(x,0) = c0 (x) for all x s D (27a) 

s(x,0) = s0(x) forallxeD. (27b) 

41 



The integral of equation (24) represents a generic management objective which 

can be defined specifically when the aquifer manager determines a particular goal for the 

cleanup project. In general, it is reasonable to assume that any management objective 

would depend on time, the pumping rate of the extraction well Q(t) [L /T], the 

contaminant concentration at the well, and the rate at which the concentration is changing 

at the well on a specified time interval. For example, one such management objective 

might be to minimize the volume of water pumped while maximizing the contaminant 

mass removed over a given period of time. 

The functional in equation (24) is defined as a definite integral over a specific 

time interval [0, tf] and around the boundary of the well. Treating the well as a boundary, 

subject to the boundary condition in (26a), introduces a point sink at the location of the 

well as the boundary of the well shrinks to a point. This approach was used to avoid 

introducing a generalized function (Dirac delta function) as a point sink in equation (16). 

In two dimensions, this boundary integral becomes the line integral around TV 

[   fdBw=Jrfds1; (28) 

and in three dimensions it becomes the surface integral around Si: 

i.fdB.-JJfdS,. (29) 

where Ti is the circle defined by the perimeter of the well shaft in two dimensions, and Si 

is the surface of the cylinder of the screen at the end of the shaft in three dimensions, as 

shown in Figures 4 and 5. 
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Figure 4. Two-Dimensional aquifer domain Q, with well boundary Ti 
and domain boundary 1"^. 

S2 

Figure 5. Three-Dimensional aquifer domain V with well boundary Si 
and domain boundary S2. 
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Equations (24) through (28) define the optimization problem examined in this 

research. The next section develops an optimization approach that, when applied to these 

equations, leads to necessary and sufficient conditions for a minimum of the functional 

defined by (24). 

3.4       Variational Approach 

The classical calculus of variations approach (Gelfand & Fomin, 1963; Sagan, 

1969) will determine an optimal pumping schedule by applying the first and second 

variations to the Lagrangian of the optimization problem given in section 3.3, where the 

Lagrangian is a single functional that combines the objective functional with the 

constraining equations. A number of the pertinent definitions and theorems of the 

calculus of variations are given here and are referenced throughout the analysis of the 

Lagrangian presented in Chapters IV through VII. 

Examination  of the  so-called  'simplest'   variational  problem  illustrates  the 

concepts of the study of variational problems: 

Let F(x, y, z) be a function with continuous first and second partial 
derivatives with respect to all of its arguments. Then, among all functions 
y(x) which are continuously differentiable for a < x < b and satisfy the 
boundary conditions 

y(a) = A,        y(b) = B, (30) 

find the function y(x) for which the functional 

J[y] = |bF(x,y,y')dx (31) 
a 

has a weak extremum (Gelfand & Fomin, 1963:14). 
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The functional J[y] has an extremum for y = y if J[y]- J[y] does not change sign 

in some neighborhood of the curve y = y(x). Additionally, J[y] has a weak extremum if 

there exists an e > 0 such that j[y] - j[y] has the same sign for all y in the domain of the 

functional which satisfy the condition ||y - y|j < e, where IHIj denotes the norm in the 

space C^ta, b]) (the space of continuous functions with continuous first derivatives on [a, 

b]), given as 

lyll = max|y(x)|+ max|y'(x)|. 
11"'        a<x<b' a<x<b' ' 

Similarly, J[y} has a strong extremum if there exists an e > 0 such that J[y]- J[y] has the 

same sign for all y in the domain of the functional which satisfy the condition 

||y — y||o <e, where |*|0 denotes the norm in the space C([a, b]) (the space of continuous 

functions on [a, b]), given as 

|y|lo=sly(x)l- 

The simplest problem can be modified in a number of ways, resulting in a much 

more challenging problem. For example, the boundary conditions in (30) might be made 

arbitrary, or y in the argument list of F might be a vector or might depend on more than 

one variable, or possibly the functional in (31) might have subsidiary conditions 

(constraints) imposed on the admissible curves, y(x). To find an extremum for a 

functional of the form of (31), we must first define the concept of the first variation. 
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Definition 1. Let J be a functional with Am(J) c ß, a normed linear space over R, the set 

of reals. Let y e Am(J) and h be arbitrary in ffi. If the limit, where a € R, 

d 
6J[y;h] = lim—J[y + ah] 

a-»o da 

exists for all h, it is called the first variation of J at y with increment h (Sagan, 1969:26). 

Another important idea is the so-called set of admissible variations. Recall, the 

simplest variational problem seeks to find an extremum y, of a given functional, subject 

to specified boundary conditions. Thus, we are not interested in all y € C ([a, b]) but 

only those which satisfy the boundary conditions. The set of all functions from C\[&, b]) 

which also satisfy the prescribed boundary conditions is called the set of competing 

functions, denoted by I. This leads to the following definition: 

Definition 2. For a given space of competing functions IcU.Hcffi is called a set of 

admissible variations of X if, for all ye I, heH, y + hsl (Sagan, 1969:31). 

Basically, heH if y + h satisfies the prescribed boundary conditions on y. With these 

definitions, the first theorem which leads to necessary conditions for the existence of 

extremais: 

Theorem 1. A necessary condition for the differentiable functional J[y] to have an 

extremum for y = y e I is that its first variation vanish for y = y, that is 

5J[y;h] = 0 

for all variations heH (Gelfand & Fomin, 1963:13). 
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In the case of the simplest variational problem, this theorem leads to a second- 

order differential equation known as Euler's equation which must be satisfied by an 

extremum. However, for the problem considered in this research, the function y above 

denotes the contaminant concentration in a confined aquifer at a particular observation 

point. The concentration levels within the aquifer are determined by the BVP presented 

in the preceding section as the constraints, or finite subsidiary conditions. For 

constrained problems, the following theorem applies. 

Theorem 2.   Given the functional 

J[y,z] = jbF(x,y,z,y',z')dx (32) 

let the admissible curves (i.e., elements of I) lie on the surface 

g(x,y,z) = 0 (33) 

and satisfy the boundary conditions 

y(a) = Ap y(b) = B, 

z(a)=A2, z(b) = B2 

(34) 

and moreover, let J[y, z] have an extremum for the curve 

y = y(x), z = z(x). (35) 

Then, if gy and gz do not vanish simultaneously at any point of the surface (33), there 

exists a function A,(x) such that (35) is an extremal of the functional 

£[y,z,Ä] = |a[F + X(x)g]dx (36) 

(Gelfand & Fomin, 1963:46). 
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Equation (36) is called the Lagrangian for the optimization problem defined by the 

objective functional in (32) and the constraint defined by (33). Theorem 2 states that the 

given objective functional has an optimal solution on the same curve as the optimal 

solution of the Lagrangian. Thus, if the Lagrangian in (36) is optimized, then so is the 

objective functional in (32) and necessary optimality conditions (NOCs) are found by 

applying Theorem 1 to the Lagrangian in (36). 

For the optimization problem of section 3.3, the Lagrangian is given as 

4Q,c,A,] = {''t f(t,Q(t),c(x,t),ct(x,t))dBwdt 

'O    *D 

L[c(x,t)] + -^e-ats0(x) - ct(x,t) 

+ PB<* K"e-«tfo'c(X)t)e»Mx 

(37) 
dxdt, 

where the operator L is defined as 

pBaKd 
L[c] = V-(D  •Vc)-V-(vc)-rV^c. (38) 

The region of integration D in (37) is defined by the domain (Q in two dimensions, V in 

three dimensions) of the confined aquifer, and the function X,(x,t) is called the Lagrange 

multiplier introduced in Theorem 2. Chapter IV of this document investigates the first 

variation of the Lagrangian in (37) to derive NOCs for an extremum. More NOCs and 

sufficient optimality conditions (SOCs) are derived by investigating the second variation 

of the Lagrangian, defined as follows: 
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Definition 3.   Let J be a functional with MJ) c «, a normed linear space over R. Let 

y e .MJ) and h be arbitrary in (2. If the limit, where a e R 

1       d2 

62J[y;h] = -lim—rJ[y + ah] 
z a->o aa 

exists for all h e ß, it is called the second variation of J at y with increment h (Sagan, 

1969:35). 

In applying Definition 3, we find that the second variation turns out to be a 

quadratic functional (Note, a functional B[x,y] depending on two elements x and y, 

belonging to some normed linear space fi, is said to be bilinear if it is a linear functional 

of y for any fixed x and a linear functional of x for any fixed y. That is, 

B[x+z,y] = B[x,y] + B[z,y] 

B[ax,y] = aB[x,y] 

and 
B[x,y+z] = B[x,y] + B[x,z] 

B[x,ay] = aB[x,y] 

for any x, y, z e (SB and a e R. If we set y = x in a bilinear functional, we obtain a 

quadratic functional (Gelfand & Fomin, 1963:97).). Also, note that a quadratic 

functional (p[h], defined on some normed linear space, is said to be strongly positive if 

there exists a constant k > 0 such that (p[h] > k|h||2 for all h. In a finite dimensional space, 

strong positivity of a quadratic functional is equivalent to positive definiteness but, in 

general, strong positivity is a stronger condition than positive definiteness. The next two 

theorems provide the basis for the work presented in Chapters V and VI. 
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Theorem 3. Given that 5J[y;h] = 0 for all admissible variations, h, a necessary 

condition for the functional J[y] to have a minimum for y = y € L is that 

52J[y;h]>0 

for all admissible variations, h. For a maximum, the sign > is replaced by < (Gelfand & 

Fomin, 1963:99). 

Theorem 4. A sufficient condition for a functional J[y] to have a minimum for y = y, 

given that the first variation 5J[y;h] vanishes for y = y, is that its second variation 

82J[y;h] be strongly positive for y = y (Gelfand & Fomin, 1963:100). 

In Chapter V, the second variation of the Lagrangian in (37) is presented and 

Theorem 3 provided the basis for the analysis that led to necessary optimality conditions 

for the second variation. Theorem 4 justifies the work in Chapter VI, where sufficiency 

conditions for a minimum solution are found. Chapter VI establishes conditions on the 

positive definiteness of the second variation found in Chapter V, thus providing sufficient 

optimality conditions for a minimum stated in the form of a theorem at the end of Chapter 

VI. 

3.5      Summary 

The analysis performed in this research pursues the theory presented in the 

preceding section. The first and second variations of the Lagrangian presented in (37) 

lead to NOCs and SOCs that establish an optimal pulsed pumping schedule. The next 

four chapters of this document derive these NOCs and SOCs, demonstrate how to use 
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them to establish an optimal pulsed pumping schedule, and examine general classes of 

functional, establishing conditions to determine what types of objectives can be 

optimized with a pulsed pumping approach. 

The purpose of the present chapter was to establish the mathematical foundation 

for the material that follows in the rest of this document. The next chapter presents the 

full investigation of the first variation of the Lagrangian, given by equation (37). The 

time interval defined by the objective functional was divided into n intervals of on/off 

pumping periods (Figure 3). The first variation of the Lagrangian on the ith interval was 

then examined and Theorem 1 was applied for all admissible variations of each of the 

independent variables, leading to NOCs for the first variation. These NOCs provided a 

tool to find a candidate optimal pumping schedule, consisting of pump on/off switching 

times, for the optimization problem in 3.3. Using this candidate solution, necessary 

conditions for the optimal solution to produce a minimum for the functional in (24) were 

determined by applying the theorems related to the second variation of the Lagrangian. 

The second variation was found through the use of Definition 3, and its derivation is 

presented in Chapter V. Additionally, Chapter V presents the application of Theorem 3 

which led to necessary conditions (for the second variation of the Lagrangian) for the 

optimal pumping schedule to produce a minimum for the functional (24). The work 

presented in Chapter VI culminates with a theorem that provides both necessary and 

sufficient conditions for the existence of a minimum. Motivated by Theorem 4, SOCs for 

the optimization problem were derived that guaranteed the optimal pumping schedule 

found in Chapter IV provided a solution that minimized (24). Finally, this technique was 
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applied to general classes of functionals, and specific examples that illustrate the 

technique are presented in Chapter VII. 
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IV. Necessary Optimality Conditions 

of the First Variation 

The preceding chapters of this dissertation have discussed the general problem of 

groundwater remediation, previous investigations of optimal management and design of 

pump-and-treat facilities, and finally an analytical optimization method that was applied 

in the work described here. This chapter presents an examination of the first variation of 

the Lagrangian defined by (37). Application of Theorems 1 and 2 of Chapter m led to 

necessary optimality conditions (NOCs) for an optimal pulsed pumping schedule, and 

their derivations are presented here in the proof of a necessary conditions theorem. These 

NOCs provide a candidate pulsed pumping schedule, dependent upon the selection of an 

objective functional that describes a particular goal, as determined by a remediation site 

manager. Subsequent investigation of the second variation determined necessary and 

sufficient conditions that this optimal pumping schedule yields a minimum solution for 

the given optimization problem. 

4.1       First Variation of the Lagrangian 

In this section, we derive the first variation of the Lagrangian in two dimensions. 

The derivation in three dimensions is similar and will not be presented here. The 

Lagrangian in two dimensions (x is the point (x,y) and dx = dxdy) is given as 

ÄQ,c,X] = l,'l f(t,Q(t),c(s,t),ct(s,t))ds1dt 

+j;fjnA,(x,t)^ 
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where the operator L is defined in (38) and the parametric equations of T are introduced 

as x = x(s) and y = y(s), where s is the parameter. Thus, c(s,t) means c(x(s), y(s), t) = 

c(x(s),t) and "the point s" means the point (x(s), y(s)), and integrating around Ti means to 

integrate over the arc length of the extraction well, given as ! Til = 27trw, where rw is the 

radius of the extraction well. The time interval [0, tf] has n distinct intervals where the 

pump is either on or off, as depicted in figure 3. In this research, the pump was assumed 

to be on initially and on during the last interval, implying that n is an odd number and the 

pump is off during even numbered intervals and on during odd numbered intervals. 

The Lagrangian in (39) is a functional of three variables. In finding the first 

variation of (39), each of these variables will be allowed to vary as described in 

Definition 1. Careful manipulation of the Lagrangian led to a decision to reverse the 

order of integration on dxdt. This allowed the first variation of the Lagrangian to 

(eventually) be written as a sum of the variations with respect to each of the variables Q, 

c, and A,, independently. Thus, equation (39) can be rewritten as 

4Q,c,?i] = I''1 f(t,Q(t),c(s,t),ct(s,t))dSldt 

>.(x,t) 
PH«.-«, 

+ 

[Lc](x,t) + J^-e-a,s0(x)-ct(x,t) 

^^e«,c(x,t)l>(x,T)e-«Mx 

(40) 
dxdt. 

Note also, the variation of the Lagrangian in (40) is equal to the sum of the 

variations of the Lagrangians defined on each of the intervals in Figure 3. That is, 

54Q,c,^ = 2>(i)[Qö),c(i),A,(i)], (41) 
i=l 
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where 

/!)[Q(i\c{1U(1)] = f' 1 f(t,Q(i)(t),c(i)(s,t),cf)(s,t))ds1dt 
•i-i 'i 

X(i)(x,t)([L(i)c(i)](x,t) + a0(x)t)-c[i)(x,t)) 

i 1 t,_, •'a + AecV1,(x urf'Mx, x)e"atdx 
Mxdt. 

(42) 

In equations (41) and (42), the pumping schedule is defined as 

CT(t) = - 
[Q 
lo 

ON for i odd 

for i even 
(43) 

for all t e [0, tf], where Q0N is a predetermined, constant pumping rate and the spatial 

differential operators are defined as 

•(•) _• 
ON 

OFF 

for i odd 

for i even 
(44) 

where the operators LON and LOFF defined by (38) and (18) change on each interval, 

depending on the status of the pump. Additionally, c(l)(x,t) and X,(0(x,t) are defined as 

the concentration and the Lagrange multiplier for the ith interval, [tlA, tj], where t0 = 0 and 

tn = tf. Finally, the known quantities a0(x,t) and A are defined as 

a0(x,t) = -^e-a,s0(x) 

and 

A = pB<*2Kd 

which do not dependent on Q, c, or X. 

(45) 

(46) 
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Applying Definition 1 to the Lagrangian in the 1th interval and suppressing the 

superscript (i) for notational convenience, the variation could be written as 

S£[Q,c,X;K,h,ii] = lim—4Q + aK,c + ah,X,+ aM.], (47) 
a->o da 

where K, h, and [I are the variations of Q, c, and A,, respectively. However, the pumping 

rate, Q is an element of the set S, (S is stated immediately following equation (1) where 

Qmax = QON), which represents the set of competing functions for optimal Q. Recalling 

the comment after Definition 2, we see that Q + K certainly would not satisfy boundary 

conditions on constant Q(t) at the endpoints ti-i and ti. Thus, Q + aK does not make sense 

in (47). Additionally, we do not seek to find an optimal pumping rate, but rather optimal 

times to switch from pumping at a constant rate to not pumping at all, continually 

repeating the process. So, the variation of the functional in (42) due to Q(t) is not 

dependent on the pumping rate, but rather the switching times t;.i and t;. Thus, the first 

variation of (42) can be written more precisely as 

8i(i)[QCi),c(i),A(i)] = 5/i)[ti_1,ti,c
(i),Aci);Ati_1,Ati,h

(i),^i)] 

= lim^-A , +aAt. ..I, + aAt;,c
(i) +ah(i),X,(i) +a^(i)], 

a->o da 

where Atn and At; are the variations of the endpoints of the ith interval. Before applying 

(48) to (42), we simplify the presentation by defining the one parameter families of 

functions A(l) (x,t;a) and C(l) (x,t;a), where t € [tu, tj, such that for each i = 1, 2,... n 
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A(l) (x, t; a) = XM (x, t) + a(i(1) (x, t), which implies that  ' 

A(i)(x,t;0) = ?i(i)(x,t) 

A(;)(x,t;0) = ^(i)(x,t), 

[A(:i(x,t;0) = 0 

(49a) 

and 

C(i) (x,t;a) = c(i) (x,t) + ah(i) (x,t),   which implies that ' 

C(i)(x,t;0) = c(i)(x,t) 

Cli)(x,t;0) = hci)(x,t), 

[C«(x,t;0) = 0 

(49b) 

KO and also defining Tu(a) for all i = 0, 1,... n, such that 

T" (a) = t; + aAt;,   which implies that   ' 

T(i)(0) = t( 

Ta
(i)(0) = Ati 

lTi|)(0)=0 

(49c) 

where subscript a denotes the partial derivative with respect to a. Thus, we can write (48) 

in a more compact form as 

5/i)[Q(i)
)c

(i)^(i)] = lim^-/i)[T(i-1)(a),T(i)(a),C(i)(x,t;a),A(i)(x,t;a)]. 
a->o da 

(50) 

:th Equation (50) characterized the first variation of the Lagrangian on the i interval, and 

this form was applied to equation (42). Suppressing the arguments of the functions Q(l), 

C(,), A(l), and T(l), and the superscripts on C(l) and A(l) (except when more than one 

interval is considered) we have 

U{ 

da. 
:(i)[Q(i\c(iU(i)] = lim—jCJ f(t,Q(i),C,Ct)dSldt 

a->o da *- T       ri 

+C1 JL(A[L(i)C ~ C< + a°^+ AeMQt' A(x,T;a)e-aMx)dxdt 
(51) 
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Notice, in (51) that the integral inside the second term can be written as 

(IA(x,x;a)e-OTdT=(T<',A(i)(x,T;a)e-aMx+ ■••  +£._„ A(n)(x,T;a)e-.aTdT,        (52) 

where the superscript on A indicates the interval and i depends on t. To take the 

derivative (with respect to the parameter a) of the expression contained in (51) and (52), 

Leibnitz's rule will be used. 

Theorem 5. (Leibnitz's rule) Assume f: R x [a, b] -» R and f(t,a) and 3f/3a are both 

continuous on R x [a, b]. Also, assume ui, U2 : R —> R are continuous and have 

continuous derivatives for a < a < b. Define 

G(a) = jU2<C°f(t,a)dt      a<a<b. 
u,(a) 

Then 

3G(a)    fu,(a)3f(t,a) 4 3a       M«)    3a 
3u, (a) 

dt + f(u,(a),a)—-—-f(u,(a),a) 
3a 

3^ (a) 
3a 

for   a < a < b (Spiegel, 1963:163). 

Using Leibnitz's rule in (51) and (52) and suppressing argument variables when it is 

clear, yields 

&*»[Q(i),c(i),XCi) ] = lim{^,1 Jri (feC. + fc,Cta)ds1dt + jri f| t=T(1) dsj« - J[. f| ^ ds^1' 

Aa[L(i)C-Ct + a0] + A[L(i)Ca-Cj + ACae
a,Jt

t,A(x,T;a)e-aMT 

+ACeat{{'f A(x,T;a)e-OTdt+A(i)(x,T(i)(a);a)e-aT<i)Ta
(i) +  ••• 

•■■  -A(n)(x,T(n-1)(a);a)e-dr("",>T.(,,-1)} 

rr<'> r 
"*" JT(i-I) Jr .T(,-I) Ijj dxdt 
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+ Jn(A[L(i)C-Ct +a0]|t=T(i) +ACeaT<i) J); A(x,x;a)e-OTdx)dxTa
(i) 

-|JA[L(i)C _ Ct + a0]| t=T(i-„ + ACe^"0 £W) Aixm^tojäxT™ }■ 
(53) 

As in the classical approach to the variational problem, we integrate by parts (over t) on 

all terms above which include Q. In order to do this, we assume that the integral is 

continuous on the i   interval, and we have 

C, 1, fc C[adSldt = |ri fe C. | £"., ds, - £', ( Ca | fCtdSldt (54a) 

and 

t=T<-dx £U("CtAa -CllA)dxdt = -JoCAi|S::i)dx-|lCllA|i.i. 
.(0  . (54b) 

+ LJn(CAat+CaAt)dxdt. 
T»-" "Q 

The integration by parts above was performed in order to introduce time boundary terms 

for the iIh interval. Essentially, on the ith interval the endpoints of the curves for which 

(40) is defined can move in an arbitrary way. Thus, we must use caution when dealing 

with C and A at the points T(l) for all i = 0, 1,... n. With this in mind, define 

eci)(x,a) = C(x,T(i)(a);a) and ^(i)(x,a) = A(x,T(i)(a);a) (55) 

then 

e<° = CtTa
(i) + Ca and *Fa

(i) = AtTa
(i) + Aa. (56) 

Also, note that 

Ta
(0)(a) = Ta

(n)(a) = 0, 
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since the endpoints of the entire interval are fixed (to = 0 and tn = tf implies Ato = Atn = 0). 

Finally, we define the variations 

8ci(x) = lim^i)(x,a) 
a-»0 

and 8A,i(x) = lim¥a
(i)(x,a), 

a-*0 
(57) 

where 8c;(x) and 8A,;(x) are the variations of c(x,t) and A,(x,t), respectively, due to the 

variable endpoints, t;. From (56) and (57), note that 

h(x,ti)=5c(x)i-ct(x,ti)Ati 

ji(x,ti) = 8Mx)1-A.t(x,ti)Ati. 

for each i = 0, 1, ... n. (58) 

Also, since to and tn are fixed, then 8c0(x) = h(x, 0), 8c„(x) = h(x, tf), 8Xo(x) = |i(x, 0), and 

8?in(x) = |i(x, tf). Now, introducing (54) - (57), into (53), letting a -> 0 (note that all 

functions change to lower case due to definitions in (49)) leaves 

8W\c(,U(i)] = J'1 I (fc -|-fCi )h(s,t)dSldt 
'i-i n at 

+ Jri([fCi5ci+(f-fCict)Ati]|t=ti-[fCt8ci_1+(f-fCict)Atl_1]|t=tM)ds1 

ntc+ |i[L(i)c + a0]+ Aceal{^' n(x,T)e-<"dT + ?i(Va,|t=ti Atj +  • 

••• -X,(,1)e-a,|l=,niAtn_1}+?ith+?iL(i)h + Ahea,Jt
ttX(x,x)e-ctMx 

■f' I 'i-i *Q 

-1 

dxdt 

[c(8^1-A,tAtl) + M8ci-ctAti)-ML(i)c-ct+a0)Ati]t=ti 

-[c(5Xw -^Ati.J + MSCi., -c^v^-ML^c-c. +a0)Atw]|t=tw 

-Ac(x,ti)eat^t,Mx,T)e-aTdtAti+Ac(x,tI_1)e
ati-'Jt£ Mx,t)e'<XTdtAti_1 

dx. 

(59) 

60 



Equation (59) is the first variation of the Lagrangian on the ith interval. In the next 

section of this chapter, we examine the first variation of the Lagrangian for all admissible 

values of the variations h, \i, At;, 8c; and 8A,;. The analysis presented in the next section is 

easier to follow if each of the integral terms in (59) is written in the form of an inner 

product between the variation and the differential operators. With this in mind, we 

manipulate the spatial derivative terms. Recall the operator L(l) is defined as 

L(i)[c] = V-(D(i).Vc)-V-(v(i)c)--^-^c, (60) 
=h 0 

where the superscripts on the right-hand side denote the terms that depend on the status of 

the pump. Through use of the divergence theorem, we derive the identity 

J XL(i)cdx = J cL*(ildx +1 \X(D{i) • Vc-cv(i)) - cD(i) • Vl] ■ ndsdt, (61) 
*n "Q. T 

(0 where the adjoint operator L w is given by 

L*(i)[X] = V-(D(i)-VX) + vci)-VX--^-±^, (62) 
= h H 

and r = T\ \j Y2 is the boundary of the domain Q. (Figure 4) and n is the unit outward 

normal to the boundary. With the boundary conditions defined by (20), the boundary 

integral in (61) becomes 

I [U2l} •Vc -cy(,)) - c2l] ■V?t]'Ädsdt 

= -Jr cD^0 -VX-n2ds2dt + Jr[c(D^ • VX+Xv^j-n^dt. 
(63) 
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The identity in (61) is now introduced into (59), but only where the adjoint will 

operate on the Lagrange multiplier A,. Also note, admissible h must satisfy the same 

homogeneous boundary conditions as the concentration. Thus, equations (61) and (63) 

could both be written with h substituted for c in both expressions. Finally, using these 

identities and with some cancellation and rearranging, (59) becomes 

67(i)[Q(i\c(iU(i)] 

=Uiff--Jrf*)h(s't)dSi 

+ Jah(x,t)(v(i)X + Xt + Aeatjt
tf Mx,x)e-axdx) dx } h(i) terms 

-J h(s,t)D(i)-V?fn2ds2+j [h(s,t)(D(i).VUlv(i))ln1ds1ldt 

+ t=t, Atj + {'' ^ J^.c + |i[L(i)c + a0 ] + Ace" [f' ix(x,x)t^dx + tf'e- 

t=t... Atn-i})dxdt •••  -^n,e (n)Q-at 

,(i) ' |iw terms 

+ f[(f-feicl)Lids1Ati 

•|a{[c(L'(i)X + Xt) + ^a0] + 

-i 
-I[(f- 

r,  =h 

•fcC,)l 

cDt0 -VI,_, -n,ds,At; + t=t: "2"°2'-"'i 

Ac(x, tj )eati Jt'' ?i(x,x)e-0CTdx} dxAt; 

'•VX + Xv'0) t=tj -ii^SiAti 

^...ds^ti., 

- l{[c(V"X+ Xt) + XR0]\ t.tii + Ac(x,ti_1)e
at- £ X(x,T)e-aMt} dxAtM 

+ Jf. cD^0 • VAJt=tM -n2ds2Atw - Jjc(D^ • VX+Xv(i))|t=tii -n^A-i 

At. terms 

" Atj_j terms 
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+ J fc 8ci t=t dsj -J [cCx.tiJSA,; + A,(x,ti)8ci]dx | 8c{ and 8X; terms 

(64) 

- Jr fCl8Ci-i t=ti^ds, + JQ[c(x,ti_1)8Xi_1 +X(x,ti_1)8ci_1]dx.     18cw and 8A,W terms 

The equation in (64) represents the variation of the Lagrangian for any interval 

i = 1, 2,... n, except for some minor changes for i = 1 and for i = n. That is, for the case 

of i = 1, we have Atn = Ato = 0, Sen = 8co = h(x, 0), and Sk[.i = 8A,o = |i(x, 0). However, 

since the initial concentration at the well is a known value, the initial variation of the 

concentration at the well, h(x, 0), must be zero. Thus, the last line in (64) for i = 1 

becomes 

Jac(x,0)^i(x,0)dx. (65) 

Similarly, when i = n, Atj = Atn = 0, 8CJ = Sc„ = h(x, t|), and 8X; = 8X„ = |i(x, tf), and the 

second to the last line reduces to 

JI.fCl|t=tfh(x,tf)ds1-JQc(x,tf)^(x,tf)dx-JaX(x,tf)h(x,tf)dx. (66) 

Recall, from equation (41) that the first variation of the Lagrangian is just the sum 

of the first variations on each of the n intervals. Thus by using (41), we can build the 

Lagrangian by summing the terms in (64) for all i, using (65) and (66) for i = 1 and i = n, 

respectively. With this summing process, we see that the first two terms (h and [i terms) 

of (64) become 
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i1i,(f<-ff-)h(s't)dsl 

+ \ah(x,t){yX+\t +AeatJt
tf Mx,T)e_aTdx) dx (67) 

-j h(s,t)D    VXn2ds2+J fh(s,t)(D •VU^)]'ii1ds1}dt 

and 

£' {Lc + n[Lc + a0 ] + Ace«' {(' u<x,x)e-OTdT + X(V «-«,Ati + 

_^(n)e-a. '4 
(68) 

At  ,   dxdt. 

Assuming the Lagrange multiplier, X(x,t), is continuous at ti for all i = 1, 2, ... n-1 (the 

validity of this assumption will be presented in the next section), expression (68) can be 

written as 

|'{i|i(Lc + a0 -ct + Ae-a,|c(x,T)eOTdx)dxdt + |a[c(x,tf )M-(x,tf)-c(x,0)|i(x,0)]dx,   (69) 

where the order of integration on dtdt was reversed and integration by parts was used on 

the term involving the product |0,tc. 

The remaining terms in (64) contain information occurring at the switching times, 

ti. If we examine a particular ti, we see that the time to switch the status of the pump 

depends on information from the current interval, as well as information from the next 

interval. Recalling the terms in (65) and (66), which deal with the endpoints of the time 

interval, the remaining terms in (64) can be rewritten as 
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+ JQ [c(c?i+?it +AeMJl,'X<x,'c)e-OTd't) + X(a0J;;^dxAti 

- 4a cDh ■ VX. • n21|;;Sds2At£ 

+ Jr fJ^oScA -i{c|So5^i +^oSCi]dx 

(70) 

for every i = 1, 2,... n - 1, where (65) addresses the case when i = 0 and (66) addresses the 

case when i = n.   In (70), the notation F j'J! is defined as   FT ° = limF(t)-limF(t) 
■ i ■       t->t;" t—»t* 

which is the jump in F at the time t;. 

Finally, combining the expressions in (65), (66), (67), (69), and (70) into equation 

(41), which represents the variation of the Lagrangian, we find 

&[Q,c,A,;Ati,h,|i] = 

d 

+ Jah(x,t)[vi + Xl+Acai\l
i'X(x,x)c-axdx) dx 

-Jr h(s,t)Dh • VX- n2ds2 + Jr [h(s,t)(E>h • VX + ^v)] • n,ds,}dt 

+JI.fC||t=t|h(x,tf)ds1-JQX<x,tf)h(x,tf)dx 

+1'|n^Lc + a0 -ct +Ae-at Jo
tc(x,x)ettTdx)dxdt (71) 

n-l 

+ X 
i=l 

\{ (f-fe,ct) + Kds^ti c(2h
-v^+?lv)]'Äi}! 

+ \a \c(vi+\ +Aeat{t'?i(x,t)e-aTdT:) + Xa0|;;;;dxAti 

-IricDh-V^-n2|j^ds2Ati 

+ (/cjll+oöcidsi -Jn{c|!;^5?li +^S6ci]dx 
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Equation (71) is the form of the first variation of the Lagrangian that was used to 

derive necessary optimality conditions for an optimal solution. Notice in (71) that the 

first variation of the Lagrangian has been expressed as a sum of the first variations of the 

Lagrangian with respect to the variables c, X, and Ati, independently. That is, the terms 

which include h(x,t) and 8CJ represent the first variation with respect to the concentration 

alone; the terms which include |i(x,t) and 8A,j represent the first variation with respect to 

the Lagrange multiplier alone; and the terms which include Ati represent the first variation 

with respect to the pump switching time alone. Thus, if we had applied Definition 1 to 

each variable (c, X, and t;) separately while holding the others fixed, we would have 

arrived at the identical expressions that are found in (71). 

The next section of this chapter presents a theorem that establishes NOCs for the 

first variation of the Lagrangian. In the proof of this theorem, a thorough investigation of 

the admissible variations of h, X, Ati, 5ci, and bXi, leads to a set of NOCs which must be 

satisfied by an optimal solution for the optimization problem described in Chapter HI. 

The conditions presented in the theorem are surprisingly simple, when compared with the 

lengthy expression presented in this section. 

4.2      Admissible Variations 

The preceding section fully developed the first variation of the Lagrangian of the 

optimization problem stated in Chapter HI. The present section analyzes the first 

variation, applying the theory stated in the previous chapter to arrive at NOCs for the 

existence of an optimal pulsed pumping schedule.   In this section, we will state these 
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NOCs in the form of a theorem which must be satisfied by any optimal solution to the 

optimization problem. In proving this theorem, we investigate equation (71) and arrive at 

the NOCs by examining the sets of admissible variations of c, X, and ti (i.e., admissible h, 

[i, and At;). Before proceeding with this investigation, three preliminary lemmas are 

presented which aid in the discussion. 

Lemma 1.   If a(x) is continuous in [a, b], and if 

ja(x)h(x)dx = 0 
a 

for every function h e C(a, b) such that h(a) = h(b) = 0, then a(x) = 0 for all x e [a, b] 

(Gelfand & Fomin, 1963:9). 

The next lemma extends Lemma 1 to functionals of several variables. 

Lemma 2. Suppose Q. is a compact region in the xy-plane. If V = Q. x [a, b] is a closed 

volume such that a(x,t) is a fixed function which is continuous in V, where x is the point 

(x,y), and if 

J J a(x,t)h(x,t)dxdt = 0 

for every continuous function h(x,t) in V which equals zero on the boundary T of V, then 

a(x,t) = 0 everywhere in V. 

Proof. This proof follows the logic from the proof of Lemma 1, presented by Gelfand & 

Fomin (1963). Suppose the function a is nonzero, say positive, at some point (xo, yo, to) 

in V. Since a is continuous in V, then the function is also positive in some sphere 

(x-x0)
2 + (y-y0)

2+(t-t0)
2<£2 
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contained in V for sufficiently small e > 0. If we set h(x,t) = 0 outside the sphere and 

h(x,t)=[£2-(x-x0)
2-(y-y0)

2-(t-t0)
2]3 

inside the sphere, then h(x,t) satisfies the condition of the lemma.    However, the 

integration in the lemma reduces to an integration over the sphere defined above and is 

obviously positive. This contradiction proves the lemma. D 

Lemma 3.    Suppose T is a simple closed curve in the xy-plane.  If S = T x [a, b] is a 

cylindrical surface such that a(x,t) is a fixed function which is continuous in S, and if 

Jj cc(x,t)h(x,t)dxdt = 0 
a   r 

for every function h(x,t) which is continuous on S such that h(x,a) = h(x,b) = 0 for any 

point x € T, then cc(x,t) = 0 everywhere on S. 

The proof of Lemma 3 is similar to that of Lemma 2 and is omitted. 

In the previous section, the final form of the first variation of the Lagrangian was 

derived with these lemmas in mind. Notice, the two time integrals in equation (71) take 

the forms of the integrals in Lemmas 2 and 3 above. Applying Theorem 1 to the first 

variation of the Lagrangian implies that equation (71) must vanish for all possibilities of 

admissible variations on h, \i, and Atj. Applying these lemmas to several special cases 

produces necessary conditions for an optimal solution. 

For example, it is possible that the variations on the switching times and the 

variation on the Lagrange multiplier might be zero. For this special case, the first 

variation reduces to a time integral over terms that include a product of the variation of 

the concentration with another function of time and space, integrated separately in space 
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over both the boundary and the domain of the confined aquifer. If we further assume that 

the variation of the concentration could vanish on the boundary T = Ti u T2 (which is 

certainly possible for admissible variations, h) and at the time endpoints of a particular 

interval, then equation (71) reduces to the form of the integral in Lemma 2. Thus, for the 

first variation to vanish for this special case, Lemma 2 implies a necessary condition that 

the term a(x, t) must vanish for all (x, t) contained in the region of integration. 

With this necessary condition applied to (71), the first variation is reduced, and 

the search for different possibilities for the variation of the concentration continues. 

Repeating this process, we conclude with necessary conditions that must be met for all 

points in the domain and on the boundary of the aquifer, guaranteeing the first variation 

of the Lagrangian will vanish for all admissible variations, h. This technique motivates 

the proof of the following theorem. 

Theorem 6. (Necessary Optimality Conditions of the First Variation) Let J[Q,c] be the 

functional given by equation (24), constrained by the boundary value problem defined by 

equations (25) through (27), and assume that f has continuous first partial derivatives for 

all of its arguments on the ilh interval of [0, tf], given as [tu, t;] for all i = 1, 2,... n. Let 

c(x,t) and Mx,t) be given as c(x,t) = c(i)(x,t)and X(x,t) = ?i(i)(x,t), and let Q(t) = Q(i)(t), 

(defined by equation (43)) for t e [tu, tj and for all i = 1, 2, ... n. If the functions 

(Q,c,A,) produce an extremal for the functional in (24) constrained by (25) through (27), 

then the optimal pulsed pumping schedule is determined by 

[f-fCtct-c(fc--fCt)] 1^=0 Vi = 1, 2, ... n-1, 
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where f and f   denote that the quantities are evaluated at optimal c and Q, the jump 

notation is defined as before:  F 
tj-0 

t,+0 
lim F(t) - lim F(t), x = xw means evaluation at the 

t-*tj 

extraction well, and optimal c must satisfy 

Lc + a0 -ct + Ae^fW-Oe"^* = 0 

for all (x,t) eüx [tu, t;], and for all i = 1, 2,... n, where c t;^= 0 for each i = 1, 2,... n-1. 

Further, the Lagrange multiplier must be a solution of the adjoint boundary value 

problem, which satisfies the integro-differential equation 

L'i + it+ Aeat [' l(x,x)e-aTdt = 0 

for all (x,t) e Q. x [tu, tj, with boundary conditions 

(f^-f^ + CD^VX+^.n^O 

D    V?in2=0 

forall(x,t) € fi x [ti-i, tj] 

for all (x,t) s T2 x [tu, t;], 

terminal conditions 

t=t =o 

Mx,tf) = o 

for all x € Tj 

for all x € Q, 
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and comer conditions 

ti-0 
tj+O 

= 0 forallxe r\ andforalli = 1, 2, ... n-1 

^ =0 for all x e Q and for all i = 1, 2, ... n-1. 

Proof. The proof of this theorem examines three special cases on a single time interval 

(ti.i,ti). Each of these special cases leads to necessary conditions for all points in the 

domain and on the boundary of the aquifer, continually reducing equation (71) until we 

find a set of n-1 conditions for the switching time to produce an optimal solution. These 

times represent the optimal pulsed pumping schedule and can be determined from the 

concentration information provided at the pumping well. 

Case 1.    In order to look at the case where the concentration varies alone, suppose the 

variation of the Lagrange multiplier is zero and the switching times are fixed. That is, let 

^i(x,t)=0 Vxefl,    0<t<tt 

At =0 Vi = l, 2, ... n-1. 
and <72> 

Further, suppose the functions (Q,c,£) optimize the Lagrangian, I. Then according to 

Theorem 1, the first variation of the Lagrangian must vanish for all admissible variations 

of the concentration. Thus, 5/[Q,c,X;0,h,0] = 0 for all hsH, the set of admissible 

variations. These assumptions reduce the first variation to 
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5£[Q,ci;Ati=0,h,^ = 0] 

3 

+ jQh(x,t)(Ll + K + Aeat I" fo^e-dr) dx 

-J h(s,t)D  .vLn2ds2+|r[h(s,t)(Dh-Vl+lv)]-nA}d 
I 2 

+ ifc,|„„l>(",tI)ds1-j[M3i,t,)li(x,tI)dx 

SfJrf„|r>(x,ti)ds1-[i|;:;>(x,t1)dX), + 
i=l 

where (58) implies that 5c, = h(x,tl) when At, = 0 and fe and fCt denote that the quantities 

are evaluated at optimal c and Q. Equation (73) represents the first variation of the 

Lagrangian with respect to the concentration alone. This is the same expression that 

would have been derived if we had started with the Lagrangian in (39), and had allowed 

only the concentration to vary. 

Next, three subcases of this first case were examined to investigate all possibilities 

for heH. Again, these special cases led to necessary conditions for all points within the 

aquifer. The first assumption is that admissible h is nonzero on a single sub-interval of 

[0, td, that is, suppose h is nonzero on the i,h interval only, but zero elsewhere. Then, 

h * 0 for all t € Cti-i. ti) and any x e Q. To establish necessary conditions for the first 

variation, we must satisfy 51 = 0 for the case defined above on every interval of [0, tf]. 

(a)   Initially, choose he H such that 

(i)    h(x, t) = 0    VxeQuT  andVtg (tu, ti) 

(ii)   h(x, t) = 0     V x e T = Ti u T2  and V t € [tu, td- 
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By applying (i) and (ii) above, we are limiting our search for admissible h such 

that h is zero everywhere on the boundary of the two-dimensional domain as well as the 

time boundary for case 1(a), i.e., the boundary of D x [t,1; ti] (Figure 6), where 

D = n u T. Thus, equation (73) becomes (suppressing the (i) superscripts) 

5£[Q,U;0,h,0] = £ jah(x,t){vi+it + Aß- Jf' X(x,t)e-dx) dxdt. (74) 

The integral in equation (74) meets the hypothesis of Lemma 2 since h is zero 

everywhere on the boundary of the region of integration. Setting the integral in (74) to 

zero and applying the lemma yields the first NOC of the first variation as 

Ll+^t+AeatJt
t(Mx,T)e-"Mx = 0 (75) 

h(x,t) = 0 (i) 

h(x,t) = 0 (i) 

Figure 6. Case 1(a). The variation h(x,t) = 0 everywhere on the boundary 
of the domain D x [tu, tj. 
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for all (x,t) € Q x [ti.i, ti]. Equation (75) is a necessary condition for optimality, and must 

be satisfied since c is optimal. Since i is arbitrary, (75) must hold for any i = 1, 2, ... n. 

Applying the necessary condition (75) on every interval reduces the first variation of the 

Lagrangian in (73) to 

2ds2 o7[Q,U;0,h,0] = Jo
t([fri(fe - J^Ws,^ - jf2h(s,t)Dh • Vl-Ä 

+ |r[h(s,t)(Dh-Vl+lv)].n1ds1}
dt 

+ j fc |t.t h(x,tt)dSl - H(x,tf)h(x,tf)dx 

+xfifc,|;:;>(x,tl)ds1-y;;;>(x,ti)dx). 

(76) 

(b)   Next, choose h€ H such that 

(i)    h(x, t) = 0    V x € Q. u r  and V t £ (tu, ti) 

(iii)   h(x, t) = 0     VxeT2  and V te [U-i, U\- 

With these assumptions, the admissible variations are allowed to be zero on the boundary 

of the aquifer, but nonzero at the well (Figure 7), reducing the first variation in (76) to 

84Q,6,fcO,h,0] =Jl ln h(s,t){(fc -|fCl) + (£h • VX+ iv) ■ Ä.jds.dt.       (77) 

Setting the integral in (77) to zero allows the application of Lemma 3, producing the 

second NOC for the first variation 

(f _JLf )+(D  •VX + Xv)-n1=0 (78) 
St Cl 

for all (x,t) € n x [t,, ft]. Again, i is arbitrary and (78) must hold for any i = 1, 2,... n. 
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h(x,t) = 0 (i) 

h(x,t) = 0 (ii) 
h(x,t) = 0 (i) 

Figure 7. Case 1(b). The variation h(x,t) = 0 everywhere on the boundary 
of the domain D x [tu, ti] except at the well for t e (tu, ti). 

Since equation (78) is a necessary condition for optimality, we apply this condition on 

every interval of the first variation of the Lagrangian in (76), which yields 

5£[Q,c,X;0,h,0] = -N h(s,t)D  -Vl-n2ds2dt 
0       12 

+ Jr fCt|t=tth(x,tf)dSl - JnX(x,tf)h(x,tf)dx 

+ S(llf,|S^.t1)d«1-Wa^ti)4i 

(79) 

(c)   Finally, choose he H such that 

(i)    h(x, t) = 0    Vxeüur  andVtg (tu, ti). 

With this assumption, the admissible variations are allowed to be zero on the time 

boundary of the interval [t,lt ti] , but nonzero at all other times within the aquifer. Thus, 

for this case, the aquifer depicted in Figure 8 would have h(x,t) = 0 everywhere on the top 
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h(x,t) = 0 (i) 

h(x,t) = 0 (i) 

Figure 8. Case 1(c). The variation h(x,t) = 0 everywhere on the time boundary 
of the domain D x [tu, tj. 

and bottom of the figure. This assumption reduces the first variation in (79) to 

&K[Q,c,kO,h,0] = -Jf' [ h(s,t)Dh • Vl-n2ds2dt. (80) 

Setting the integral in (80) to zero allows the application of Lemma 3, producing 

the next NOC for the first variation 

D  -V?i-n2=0 (81) 

for all (x,t) € T2 x [ti-i, td. Since equation (81) is a necessary condition for optimality, we 

apply this condition to the first variation in (79), reducing the first variation of the 

Lagrangian to 
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Q,c)l;0,h,0] = jrfct|t=t(h(x,tf)ds1-jni(x,tf)h(x,tf)dx &[Q. 

+ 
i=i vr>   " / 

(82) 

Each term in equation (82) involves evaluation of the variation, h, at a specific 

point in time, % As such, the terms are independent and since h(x,ti) are arbitrary 

variations for each i = 1, 2, ...n, then each term in (82) must equal zero independently, 

leading to the 'corner' conditions 

and 

;:^=0     Vxer\ and Vi = 1, 2, ... n-1 (83a) 

X J'^ = 0      Vxeüand  Vi = 1, 2, ... n-1, (83b) 

and the terminal conditions 

and 
Mx,tf) = 0 

VxsT, (84a) 

VxeQ. (84b) 

The corner conditions in (83) assert the continuity condition for the Lagrange multiplier 

at each time, t, as well as the continuity of the first partial of f with respect to the time 

rate of change of the concentration at t, The continuity of X justifies the simplification 

made in equation (69), and also serves to further simplify the first variation of the 

Lagrangian. 
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The necessary conditions contained in equations (75), (78), (81), (83), and (84) are 

effectively the NOCs for optimal c . Returning to equation (71), we see the first variation 

of the Lagrangian (given that the functions (Q,c,fo are optimal) can now be written as 

52[Q,c,^;Ati,h,|i] = 

I' Jan(Lc + a0 -ct + Ae-|o
tc(x,T)e-dT)dxdt-|ln£|r+

0o5Mx      (85) 

+ XlJ(f-itct)-c(fo-|^)}l:r+°odSlAtl' 

where equations (75), (78), (81), and (83) were introduced into the At, terms to simplify 

the expression. Next, we seek the admissible values of the variation of the Lagrange 

multiplier, |i, leading to the second case presented below. 

Case 2.   Now, suppose the functions (Q.c.X) optimize the Lagrangian and the switching 

times are fixed. That is, let 

At.=0 Vi=l, 2, ... n-1, (86) 

then Srö.e.fcO.M-O for each ^M, the set of admissible variations of X.   These 

assumptions reduce (85) to 

5£[Q,c,X;At;=0,h,(i] = 
n-l   c     , (P I) 

£ JQn(Lc + a0 -6t + Ae-io
tc(X,T)e«Mx)dxdt-SJa£|;:>(^t1)dx, 
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where (58) implies that 8fc = \JLM when At; = 0. Now, suppose that admissible \i is 

nonzero only on the ith interval, and zero elsewhere. Necessary conditions for the first 

variation follow from the application of Theorem 1. Since the functions (Q.c.A,) 

optimize I, then we must satisfy 52 = 0 for the case defined above on every interval of 

[0,tf]. Thus, choose ji(x, t) such that 

(i)    n(x,t) = 0    Vxeü  andVt« (tu,t;) 

(ii)    |i(x, t) = 0     V x e T = Ti u T2  and V t € ft-i, tj. 

Applying (i) and (ii), equation (87) becomes 

84Q,c,fc0,h,n]=: I lan(L6 + a0-ct+Ae-lo
tc(x,i:)e-dx)dXdt. (88) 

The integral of (88) satisfies the hypothesis of Lemma 2 since \i is zero everywhere on the 

boundary of the region of integration. Setting (88) to zero and applying the lemma 

produces the NOC 

Lc + a0-ct + Ae-atJo
tc(x,i:)eaMx = 0 (89) 

for all (x,t) € Q x [tu, t;]. The NOC of equation (89) simply states that optimal c must 

satisfy the contaminant transport equations, presented in Chapter ffl. Also, since i is 

arbitrary, (89) must hold for all i = 1, 2,... n. Applying this NOC to the first variation of 

the Lagrangian, we are left with 

3,c,fc0,h,ji]= -iM^^dx. (90) 
i=l 
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Setting the term in (90) to zero leads to the necessary condition 

'.-°=0 Vi = 1,2, ... n-1, (91) 
t:+0 W 

which states the continuity of the concentration at the switching times, t. The necessary 

conditions for optimal X are contained in equations (89) and (91). Applying these 

conditions and the necessary conditions for optimal c in equations (75), (78), (81), (83), 

and (84), to the first variation of the Lagrangian given by (71), reduces the expression to 

With the NOCs found thus far, the first variation of the Lagrangian has been reduced 

significantly for the optimal functions (Q,c,l). The final step that remains is to allow 

nonzero values for the variation of the switching times, At, This step produces n-l 

necessary conditions for an optimal pulsed pumping schedule that, when satisfied, will 

produce the n-l optimal times to switch the state of the pumps from on to off or vice- 

versa and back again. 

Case 3. Finally, suppose the functions (Q,c,£) optimize I and the switching times are 

allowed to vary. If Q produces an optimal pulsed pumping schedule determined by the 

times, ti, then 5Z[Q,6,X;Ati,h,n] = 0 is necessary by Theorem 1. Thus, (92) becomes 

840.6**,,^^ (93) 
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and each term in (93) must go to zero independently, producing the n-1 corner conditions 

that must be satisfied by optimal Q 

Ü«-"w-rt--hv\ !;X=o Vi = 1, 2, ...n-1. (94) 

In the two-dimensional aquifer, the boundary of the well is small when compared 

to the overall geometry of the aquifer.  As such, we allow the boundary Ti to shrink to 

, resulting in the evaluation of equation (94) at the location point of the center of the zero 

well. Thus, the necessary conditions of (94) become 

[f-fCict-c(fc--fCi)] 
tr0 
t.+0 = 0 Vi = 1,2, ...n-1, (95) 

and the theorem has been proved. 

Notice, equation (95) can be rewritten with the argument lists included as 

f(t1,Q
(^c(i)(xw,ti),c^(xw>ti))-fJti,Q

(^cw(xw,ti),c/iHxw,ti))ct«(xw,ti) 

'f(ti,Q
(,+1),c(,+1)(xw,ti),cl

(W,(xw,tI)) | 

-fei(ti,Q
(i+,),c(W)(xwfti),ct

(,+1)(*w.tl))6t
(1+1}(xw,ti)._ 

'fc(ti,Q
w,c0)(xw,ti),ct

w(xw,ti)) 

D 

-cU)(xw,t;) 

+etI+1,(xw,ti)' 

-ffcM^c^x^Xc^x^O) 
at   ' J 

^(t^Q^e^x^t^er^w^)) 

-l-fcltpQ^.e^Cxw.ti^r'^w.t,)) 
at   ' -* 

= 0 

(96) 
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for every i = 1, 2, ... n-1, where xw is the location of the center of the well.   Since the 

concentration must be continuous at ti; we could simplify equation (96) as 

f(t1)Q
(^c(xw,ti)Jcf)(xw,ti))-fJtI)Q

(l),c(xw,ti),cf)(xw,ti))c:i)(xw,ti) 

4f(ti,Q
(i+^c(xw,tI),cr(xw,t1))-fJt1,Q

(i+^c(xw,t1),cr(xw,to)cr)(xw,ti)} 

-cCx^t^^Q^cCx^a 

(97) 

for alii =1,2, ...n-1. 

Equation (97) provides the tool to find an optimal pulsed pumping schedule. At 

first glance, one might think (97) is a partial differential equation where c is the 

dependent variable. However, equation (89) is a necessary condition on c that states the 

optimal concentration must satisfy the contaminant transport equations stated in the 

optimization problem. Thus, all we need to know is the value of the concentration and its 

time derivatives at the pumping well for discrete time values and then to find the times 

where equation (97) goes to zero becomes an algebra problem for a particular integrand f. 

Any contaminant transport code that incorporates the assumptions of our problem can 

provide the concentration data. For the illustrations presented in Chapter VII, the 

SUTRA code which incorporates rate-limited sorption (Caspers, 1994) was used to find 

the concentration information. This information was then used to find the zeroes of 

equation (97). The zeroes of (97) are the tfs that determine the optimal pulsed pumping 

schedule. 
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4.3      Summary 

This chapter developed the first variation of the Lagrangian of the optimization 

problem presented in Chapter HI. Additionally, the first variation of the Lagrangian was 

examined for all possibilities of admissible variations of the concentration, the Lagrange 

multiplier, and the switching times. This investigation proved a theorem, establishing the 

NOCs of the first variation which must be satisfied by any optimal solution (Q, c ,X). 

These NOCs produced a set of n-1 equations whose solutions form a candidate set of 

switching times for an optimal pulsed pumping schedule. These candidate switching 

times must still be tested to determine if they yield a minimum for a given objective 

functional. 

In order to test these candidate solutions, a sufficiency test needs to be applied. 

The next chapter develops the theory of the second variation, and presents a theorem that 

establishes necessary conditions derived from the second variation of the Lagrangian. 

These necessary conditions serve as a tool to determine if the candidate switching times 

produced by (97) reflect a maximum or a minimum for the objective functional in 

question. Chapter VI builds on the necessary conditions presented in the next chapter to 

develop sufficient conditions for a minimal solution. 
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V, Necessary Optimality Conditions 

of the Second Variation 

The first variation of the Lagrangian, derived and analyzed in Chapter IV, 

provided a tool in the form of necessary conditions which must be met by any optimal 

pulsed pumping schedule. The equations in (97) represent this tool, and the zeroes of (97) 

provide a candidate pumping schedule for an optimal solution of the functional in (24), 

subject to the constraints of (25) - (27). Since the goal of this research is to minimize the 

functional in (24), we must determine necessary and sufficient conditions for the 

existence of a minimum for the candidate times determined from the first variation of the 

Lagrangian. 

The second variation of the Lagrangian serves to verify that the candidate optimal 

schedule found from (97) yields a minimum for the functional in (24). This chapter 

develops the second variation of the Lagrangian (from Definition 3) and applies 

Theorem 3 to prove a necessary conditions theorem, which the second variation must 

satisfy to produce a minimum for the functional (24). Sufficient conditions were found 

by applying Theorem 4, and Chapter VI presents the analysis that established sufficiency 

for a minimum. 

5.1       Second Variation of the Lagrangian 

This section develops the second variation of the Lagrangian in two dimensions. 

Again, as in the case of the first variation, the analysis in three dimensions is similar and 

will not be presented.   The Lagrangian in two dimensions is restated as 
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4Q,c,M = I' Jrif(t,Q(t),c(s,t),ct(s,t))ds1dt 

+ Jo
,,JnMx,t){[Lc](x,t) + a0(x,t)-ct(x>t) + Ae-a,|o'c(x,t)eaMx}dxdt. 

Recall, when deriving the first variation, the order of integration on drdt was reversed. 

The main purpose of this step was to write the first variation as a sum of first variations 

with respect to each of the variables c, I, and fc. That is, in equation (71), the h and 5ci 

terms represent the first variation of the Lagrangian with respect to concentration alone, 

the \i and 5Xi terms represent the first variation of the Lagrangian with respect to the 

Lagrange multiplier, and the Ats terms represent the first variation of the Lagrangian with 

respect to the switching times. With each of these expressions isolated, the analysis that 

followed was more direct. In analyzing the second variation, we find that using the 

Lagrangian in the form of (98) provides the best approach. 

As was the case for the first variation, the second variation of the Lagrangian in 

(98) is equal to the sum of the second variations of the Lagrangians defined on each of the 

intervals in Figure 3. That is, 

524Q,c,X,] = S52/i)[Q(i),c(i),X,(i)], (99) 

where 

/P[Qm,c®Xl)] = f' I f(t,Q(i)(t),c(i)(s,t),c<!)(s,t))dSldt 

'[L(i)c(i)](x,t) + a0(x,t)-cf)(x,t) 

+ f U(i)(x,t) 
"<i-, n + Ae-atftc(x,T)eaM'C 

(100) 
dxdt. 
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Again, recalling that the variation of the Lagrangian due to Q(t) depends on the 

switching times, we write the second variation as 

82£(i)[Q(i),c(i),A,(i)] = 522(l)[ti_1,ti,c
(i),X(i);AtM,Ati,h

(i),^i)] 

i    a2 

—lim— 
2 a^o da 

i       tf (101) 
= ^lim^i(i)[ti_1+aAti_1,ti+aAti,c

(i)+ah(i),X(i)+a^(i)], 

where Atn and Ati are the variations of the endpoints of the ith interval, as before. Also, 

simplifying the presentation, we use the definition of the variations given in equations 

(49) again and have 

52i(i)[Q(i) ,cci) ,A,(i)] = lum^-iV"" (a),T(i) (a),C(i) (x,t;a), A(i) (x,t;a)].      (102) 
2 a-*o da 

Equation (102) defines the second variation of the Lagrangian on the ith interval, and is 

applied to (100). Suppressing the arguments of the functions Q(l), C(,), A(l), and T(,), and 

the superscripts on C(i) and A(i) (except when more than one interval is considered) wc 

have 

5^nQ^c^x^]4lin^|^{(;:,)jrlf(t,Q^c,c,)ds1dt (io3) 

+f(''
,
|)JnA(L(i,C-Ct+a0 + Ae-atJo

tC(x,x;a)eaTdt)dxdt}. 

Notice, in (103) that the integral inside the second term above can be written as 

jtC(x,x;a)eOTdT=rC(1)(x,r,a)eaMT+ •••  +^W)C
(i)(x,x;a)eOTdt (104) 
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for i > 1 and t e [T  ', T(l)],  where the superscript on C indicates the interval.  Using 

Leibnitz's rule in (103) and (104) yields 

52/i)[Q(i),cci),X,(i)] = 

\ i^l-lc k(f<c*+f<>c <*)dsidt+1f i «o»ds^ - kf i—>dsiT*(i-i) 

+

 JT(i-0 Jr t«'-" -n 
+A 

L(i)C-Ct +a0 + Ae-atJo
tC(x)x;a)eaMx 

L(i)Ca -Cta + Ae"at Jo
tCa(x,x;a)eatdt + 

. Ccl)(x,T(1)(a);a)eaT<1,Ta
(1) + ••• -C(iW(M)(a);a)eaT(i~X(i_1) 

dxdt 

+ JjA[L(i)C-Ct +a0 + Ae-atJo
tC(x,T;a)eaM'c]j|t=T(i)dxTa

(i: 

-.[(A[L(i)C - Ct + a0 + Ae"at Jf' C(x,t; a)eaTdx]) | ^ <hTa
(W) 

(105) 

Before taking the next derivative, we examine the term 

C(1)(x,T(1)(a);a)eaT"Ta
(1)+  •••  -C(,)(x,T(,-,)(a);a)ea1,   Ta 

(i) („ TÜ-D , 1aT('-')rp(i-l) 
a 

This term occurs from applying Leibnitz's rule for i > 1, since the endpoints of each 

interval depends on the parameter, a. When i = 1, this term does not appear, since the 

endpoints are independent of the parameter, a. In the limit (as a -» 0), the expression 

above approaches zero because of the continuity of c at each % Additionally, since h(x,t) 

must be as continuous as c(x,t), then the following expression, which arises from the 

second derivative, approaches zero in the limit as well 

Ca
1)(x,T(1)(a);a)eaT<I,Ta

(1) + 
aT(i-" rp(i-l) -CV.T^'ta);^   Ta 
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Thus, in finding the next derivative for the second variation, these terms were omitted and 

the second variation could be written as 

52i(i)[Q(i),c(iU(i)] = 

}üm{£l J"ri(fccC> + 2fcc CaCta +fCtC C
2JdSldt 

+(i(fec. +fe cta +ftTf +fec. +fCte:)|t=T(i)dSlTa
(i) 

-Jn (fcca +fc cta +ftTa
(i-!) +fee. +fCie:)|t=T(i-,)dSlT8 

+ ^Uo2Aa[L(')Ca -Q. +Ae-^tCa(x,T;a)eOTdt]dxdt 

4 
A, L(i)C-Ct+a0+Ae-atJ C(x,T;a)eaTdT b 

+ A L(i)C -C,.+Ae" 1
1'C.(X,T; a)eaxdT 

t=T<» dxT= 
(i) 

A, L(i)C-Ct+a0+Ae" :flC(x,T;a)e° :dx 
T A 

+ A L(i)Ca -Cta + Ae-at(tCa(x,T;a)e(IxdT]^ 
t=T<,-ndxT;: (i-l) 

4 
*F. LC0C-C,+an+Ac t   '   "0 r-'fWx; a)eaTdi 

+A 

3a„ 

+A{z~ii atr-p(i) Ca(x,T;a)eaTdT + CeatTa
l I -ae-atTa

tl,J C(x,x;a)eatdx 

(106) 

t=T" 
,dxT (O 

4 

¥. 

+A 

L(i)C - Ct + a0 + Ae"at (' C(x,r, a)eaTdt 

at a 

e-at[{tCa(x,T;a)e-dx + Ce«tTa
(i-1)] 

+Ai 
-ae-atX atrWi-l) JtC(x,t;a)eaxd'c 

_T(i-D dxX (i-l) 
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where we have   reintroduced the terms in (55) and defined (?/(l)(x,a) = Ct(x,T(l)(a);a) 

for each i = 0, 1,... n. Note also, with this definition we have 

e:(i)=CttTa
(i)+Cte (107) 

This leads to the definition 

5c'(x) = lm<(i)(x,a), (108) 
a-»0 

where 8c' (x) is the variation in ct(x,t) due to the variable endpoints, t;. From (58), (107) 

and (108) we see that 

hl(x,ti) = 8c;(x)-ctt(x,ti)Ati Vi = 0, 1, ... n. (109) 

Also, since t0 and t„ are fixed, then 5c'0(x) = ht(x, 0) and 5c'n(x) = ht(x, tf). 

Proceeding as we did with the first variation, we assume the integral is continuous 

on the ith interval and integrate by parts (over t) on the term above which includes Q, but 

only on the boundary integral term 

£!1 lr, 2fw CaCtadSldt = ln fccC^|%l ds1 - £1 J[. Cl |fCCidSldt. (110) 

Introducing (107), (108) and (110) into (106) and letting a -> 0 yields for the second 

variation 
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522(i)[Q(i),c(iU(i)] = 

\{lllri(fCtCthf (s,t) +jfcc -^fcc, j h2(s,t)JdSldt 

+IFl([ft "foct -V« +fccC?]At? +2[fc -fCCtct]5CiAtl +2fCi8c^Ati +fee|Sc?|Wids1 

-lj[ft -foct -V« + footcf]At2, +2[f0 -fe0lct]&HAt1.1 +2fCi8cJ_1At,1 +fCC[5c2
4) 

+ J['' Jn2n[L(i)h - ht + Ae-atlo' h(x,x)eaTdx]dxdt 

4 

t=t,., dsi 

^ -^tAti)[L(i)c-ct +a0 + Ae-"'J[tc(x,i:)e"td't] 

+ X L(i)(8ci-ctAti)-(6c;-cttAti) + Ae-atJ[th(x,T)eceüdT] 

(111) 

t=t, dxAti 

■1 
(5Vi -^Ati.J^c-c, +a0 + Ae"at Jo

tc(x,x)eaTdt] 

+ x[L(i)(5cl_1 -c.AlJ-^cU -cttAtw) + Ae"«^ h(x,x)eOTdx 
t=t,., dxAti-i 

4 
5X i[L(i)c-ct +a0 + Ae-atJo

tc(x,T)eaTdt 

+ AI 

d-d „ 
L(05c;-5c'+-r^At 

i       i at 

+A c""'[Ih(x,x)c(Xtdx + ccatAt;) -ae-atAt;('c(x,x)eaxdx 

,=tdxAti 

4 
5A,W 

+ AI 

Lll,c-c, +an +Ae t   '   "0 ^'PcCx, x)eaxdx 

3a, 
L^-Sc^+^At,., 

+A[e-at (Jj h(x,x)etttdx + ceat AtM) - ae"0" Atw Jo'c(x,x)eaTdx 

t=t,_, dxAtj_, 

•th 
The equation in (111) is the second variation of the Lagrangian on the i interval, 

for all i = 1, 2, ... n. Again, since to and tn are fixed, we know that Ato = Atn = 0. Thus, 

using (99) we find the second variation of the Lagrangian is the sum of a boundary 
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integral over all time, an integral over the domain of the aquifer over all time, and a sum 

of jumps at the corners, t; 

2524Q,c,?i;Ati,h,|i] = 

tlifc,c,h?(s,t) + 
a 

f -—f 
~  at cc        "v. -cc, h2(s,t) ds.dt + ^f^h^^ds, (112) 

n-l 

i=l 

+ £ ln2|i[Lh - h, + Ae-0" £ h(x, x)eaTdx]dxdt 

jri ([ft - fect - fCtctt + fCCicf]Atf + 2[fe -fCCtct]5CiAti + 2fCt8c;At; + fCCt8c2 

(28X; -X,tAti)[Lc-ct +a0 + Ae-atJo
tc(x,x)eolTdx]Ati 

I   +2X[L(8CI -c.AtJ-fe -cttAti) +Ae"at^(x.^e^dijAt; 

ti_0ds 

+ A| Lct -ctt +^ +A(c-ae-atJtc(x,x)e(XMx) 
at \ ° '. 

lAt 

ti+odx 

To simplify equation (112), we assume that c is sufficiently differentiable, so that 

the last term in the integral on Q. can be written as 

A Lct -ctt +-|^ +A(c-ae-at Jo'c(x,x)eaTdx) 

-4 dt 
Lc-ct +a0+Ae"atJtc(x,x)eaxdx 

(113) 

Also, recall that the operator L depends on the status of the pump so that L ti-0 = L(i) and 

tj+O = L(l+1). Substituting (113) into (112) the second variation becomes 
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2524Q,c,X;Ati;h,n] = 

Uk,tf(s,t). a 
f —f 
~  at -cc        -\t -cc, 

n-1 

+ . 
i=l 

h2(s,t) lds^ + 1 f^h2 t=tf dsx (114) J T, 

l' ja2\i[hh-h{ + A&~m foh(x,x)caxdx]dxdt 

jri([ft -fcct -fC(ctt +fCCtc
2]Atf +2[fe -fCCtct]5CiAti +2fCt5c^Ati+fCC(5cf)|;;;°ds1 

25^ -XtAtj + XAtj — I [ix -ct + a0 + Ae'at Jo
tc(x,x)eaTdx]Ati 

+ 2^L(5Ci -c.AtJ-fSc; -0^) + Ae-at(th(x,x)eaTd'c]Ati 
4 t+odx 

Equation (114) is the form of the second variation of the Lagrangian that was used 

to derive necessary conditions for a minimal solution. The next section presents a 

theorem which is proven by a thorough investigation of the admissible variations of h, |i, 

At;, Sei, 8c', and Sk,. This proof establishes a set of NOCs which must be satisfied by a 

minimal solution of the optimization problem described in Chapter III. 

5.2      Admissible Variations 

The preceding section developed the second variation of the Lagrangian for the 

functional in (24) constrained by the conditions in (25) - (27). The present section 

analyzes the second variation, applying the theory stated in the Chapter m to arrive at 

NOCs for the existence of an optimal pulsed pumping schedule. In this section, we will 

investigate equation (114) and prove a necessary conditions theorem by examining the 

sets of admissible variations of c, X, and t;. Again, as in the case for the admissible 

variation of the first variation of the Lagrangian, examination of special cases led to 
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necessary conditions that must be met for all points within the aquifer. Before proceeding 

with this investigation, we present two lemmas which aid in the discussion. 

Lemma 4.    Suppose P and Q are both continuous on [a, b].  A necessary condition for 

the quadratic functional 

A[h] = f [P(x)h'2 (x) + Q(x)h2 (x)]dx 
a 

defined for all functions he C'Ca.b) such that h(a) = h(b) = 0, to be nonnegative is that 

P(x) > 0 (a < x < b) 

(Gelfand & Fomin, 1963:103). 

The following lemma is similar to Lemma 4: 

Lemma 5.   Suppose that P(x) > 0 and Q are both continuous for all x € [a,c) u (c,b] and 

m is a constant, a necessary condition for the quadratic functional 

A(x) = f [P(x) h'2 (x) + Q(x)h2 (x)]dx + mh2 (c) 
a 

defined for all he C^a.b) such that h(a) = h(b) = 0, to be nonnegative is that 

m + mini lim P(x), lim P(x) } > 0 (a < c < b). 

Proof.    This proof is similar to the proof of Lemma 4 presented by Gelfand & Fomin 

(1963).  Without loss of generality, suppose lim P(x) is the minimum of the two one- 

sided limits and also suppose the inequality above does not hold.   That is, suppose 

m + lim P(x) = -2ß (ß > 0). If P(x) is continuous on [a, c), then there exists a > 0 where 
x-»c 

P(x) + m<-ß Vxe(c-a,c]. 
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Now, choose he C!(a, b) such that the quadratic functional A is negative. That is, let 

h(x) = i 
sin' 

0 

X-C       7t 
c-oc< X<C 

otherwise. 

Then we have 

. _2 

Jb[P(x)h'2(x) + Q(x)h2(x)]dx + mh2(c) = JC  P(x)—rsin2 

a c-a 4(X 

7T(X-C)1 

a 
Id? 

fc K 
J   QWT 4a2 -sin 

rc(x-c)    rcl. 
■ + — dx+m 

2a        2J 

% 
<-(R + m)—7-a+Ma+m r        4a 

where M = max |Q(x)|.   For sufficiently small a, the right-hand side of this equation 
a<x<b 

becomes negative. This contradiction proves the lemma. D 

We now state a theorem which provides necessary conditions for the second 

variation to produce a minimum for the optimization problem of Chapter III. 

Theorem 7. (Necessary Optimality Conditions of the Second Variation) Let J[Q,c] be 

the functional given by equation (24), constrained by the boundary value problem defined 

by equations (25) through (27), and assume that f has continuous first and second partial 

derivatives for all of its arguments on the i,h interval of [0, tf], given as [tj-i, ti] for all 

i = 1, 2,... n. Letc(x,t) and \(x,t) be given as c(x,t) = c(i)(x,t)and X(x,t) = A,(i)(x,t), and 

let Q(t) = Q(i)(t), (defined by equation (43)) for t e [tM, t;] and for all i = 1, 2,... n. If the 

functions (Q,c,A,) produce a minimum for the functional in (24) constrained by (25) 

through (27), then the following conditions are necessary 

fc.Jt,Q(i)(t),c(i)(xwt),c{,)(xwt)]^0 
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for all te [tu, tj], and for all i = 1, 2,... n, 

detM(i)>0, 

for all i = 1, 2,... n-1, where M( is given as (i). 

M(l)=- 
2 

(ft-fcct-fCtctt+fCCt£t) 

(fc-U.) 

tj-0 
t:+0 [*c      *cct

CtJtJ+0 
tj-0 

t,+0 
t,-0 
ti+0 

and 

[ft-fcct-fCtctt+fCCicf]   |;;;;>o 

[l]  |S>° L        ' -*x=x... I   ' 

for all i = 1,2, ... n-1. For a maximum, the signs > and > are replaced by < and <, 

respectively. 

Proof. In this proof, we establish necessary conditions for the existence of a minimum 

solution for the functional in (24), constrained by (25) through (27). Suppose the 

functions (Q, c , X) represent a minimum solution for this optimization problem, then the 

NOCs of Theorem 6 must hold for (Q, c, X). Specifically, NOCs (83a), (84a), and (89), 

restated here as 

and 

;;;„=0        Vxer,and   Vi = l, 2, ...n-1, 

fcL =0       Vx6 r„ 

Lc+ a0 -ct + Ae-atjtc(x,T)eOTdT = 0     V (x,t) e Qx [tu, tj 

95 



must hold for the optimal solution, reducing equation (114) to 

2b2l[Q,c,X;Ati,h,[i] = 

dS)dt tlr(fc,c,h?(s,t)+Lfcc-|fcc,jh
2(s,t)^ 

+ fQ' JQ2n[lJi - ht + Ae_at £ h(x,x)e°"d'c]dxdt 

„-! [Jri([ft-fcat-fCictt+fCCtct
2]Atf +2[fc-fCCl£t]5ciAti + fCCt5cf) 

+J (2i[h{fcl -ctAt,)-(5c; -cttAt;) +Ae"at|o
th(x,x)eaxdT 

(115) 

t,-0 
t;+odsi 

ti+0dx 

In the rest of this proof, we examine (115) looking at all possibilities for the 

variations of c, X, and t;. In analyzing the first variation, we found conditions on terms 

that must vanish for all space and time depending on whether the point in space was on 

the domain or the boundary of the aquifer. These conditions were then applied to the first 

variation, simplifying the expression with each new necessary condition, until finally all 

necessary conditions were found that guaranteed the first variation would vanish, as 

required by Theorem 1. 

In the case of the second variation, Theorem 3 makes it necessary for the second 

variation to be nonnegative for the existence of a minimum solution. Thus, each new 

necessary condition does not always reduce the second variation, and the analysis is 

somewhat different from what was presented in Chapter IV. The remainder of this proof 

presents an itemized account of admissible variations which led to necessary conditions 

for the second variation of the Lagrangian. 
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Case 1.   First, suppose'the pump switching times are fixed; Ati = 0 for all i = 1, 2,... n-1, 

reducing the second variation for optimal (Q, c, X) in (115) to 

2524Q,c,X;Ati=0,h,|i] = 

£I|fe,„h?(M) f  -—f .cc  at cc- 
h2(s,t) ds^ + ^if«, ^(8,1)^(18,      (116) 

i=i r' 

+ fo' Jn2[i[Lh - ht + Ae"" I h(x,T)eaTdx]dxdt 

Next, subcases of this first case were examined to investigate all possibilities for 

heH, the set of admissible variations of the concentration, and for jieM, the set of 

admissible variations of the Lagrange multiplier. The first assumption is that admissible 

h is nonzero on a single sub-interval of [0, tf]. Let i e {1, 2,... n} be fixed and suppose h 

is nonzero on the i,h interval only, that is, h * 0 for all t e (tu, ü) and for all x € QuT. 

To establish necessary conditions for the second variation, we must satisfy 82£ > 0, given 

that 8i = 0, for the case defined above on every interval of [0, tf]. 

(a)   Initially, choose h(x, t) such that 

(i)    h(x, t) = 0    V x e Q. u r and V t £ (t^, t{) 

(ii)   h(x, t) = 0     V x e T = n u T2   and V t e [tu, tj. 

This choice of h(x, t) is identical to case 1(a) in Theorem 6, so that Figure 6 applies again 

here. Applying (i) and (ii) above to (116), we have 

2524Q, c, i;0,h, ji] = Jj'11 |02ji[L(i)h - ht + Ae"at Jf' h(x,T)eaTdx]dxdt (117) 
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If n(x, t) = 0 for all xeQ. and t s [0, tn], then 52i(l) = 0 and the second variation of the 

Lagrangian is nonnegative, as required. Now, suppose (i(x, t) * 0 for all xeO and 

te (ti-i, ti) and |i(x, t) = 0 for all xe Q and te [0, ti] u [ti, t„] (that is, |i(x, t) * 0 on the i,h 

interval only). Further, suppose h(x, t) is fixed such that 

L(i)h - ht + Ae"at j^ h(x/c)eOTdT > 0 

for all \ie M, the set of admissible variations of X. If pe M such that \i > 0 then 52i(,) > 0. 

However, if [ieM such that \x < 0 then 52i(l) < 0. Since we cannot have both, then we 

must have 82Z(,) = 0. Since |i(x, t) * 0, then 

L(i)h-ht+Ae-atJ\(x,T)eaTdx = 0 (118) 

is necessary for all xefi, te(ti-i, t;) and for all i = 1, 2, ... n. On any given interval, 

(ti-i, ti), the integro-differenlial operator defined by (118) is a continuous, linear operator. 

Since (118) must hold for every interval, and since h(x, t) is also continuous, then (118) 

must also hold at the endpoints of each interval. That is 

Lh(x,t;)-ht (x,t;) + Ae"ati J£' h(x,x)eOTdx = 0 (119) 

for any i = 1, 2, ... n-1, is necessary. Recalling equations (58) which defined h(x, ti) and 

equation (109) which defined h,(x, t;), then (118) and (119) applied to (115) reduces the 

second variation of the Lagrangian to 
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2524Q,c,X;Ati>h,(i] = 

.2 tlr,kc,h?(S,t)+[fcc-|fo, h2(s,t)  ds.dt (120) 

Slr ([ft-fcct-fl,ctt + fcc,c
2]At2 +2[fe -fcc,ct]6ciAti +!„.&?)  Jj>lt 

i=l     ' c_c 

and for Case 1, which we are presently considering (i.e., At; = 0 for all i = 1, 2, ... n-1), 

equation (116) becomes 

282Z[Q,c,X;Ati=0,h,ji] = 

tl[fe.,h?<M> + *    a - 
f -—f 

.cc  at "• 
h2(s,t) dsjdt 

n-1   /» 

+ SJrfcct 
i=l '' 

h2(s,t) ,,-0ds 
(121) 

(b)   Next, allow nonzero h at the well as in case 1(b) of Theorem 6. Choose heH 

such that 

(i)    h(x, t) = 0    V x e Q. u T and V t e (tu, tj) 

(ii)    h(x, t) = 0    V x e T2 and V t e [tu, tj. 

With these assumptions, the second variation of the Lagrangian (121) becomes 

^l[Q,c,i;^l=0,h,[i] = ^\l I f;Cih
2(s,t) 

. a. 
f —f 

.cc  at a h2(s,t) dSidt. (122) 

Letting the boundary of the well shrink to a point (i.e., Ti-> 0) and applying Lemma 4 to 

the functional (122), a necessary condition for (122) to be nonnegative is that 

L   rt,Q(1,(t),c(xwt),ct(xwt)]>0 (123) 

for all t€ [tu, ti], and for all i = 1, 2,... n. 
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The necessary condition in (123) provides a tool which can be used to determine 

the classes of functionals in (24) which can be minimized through this variational 

approach. Additional necessary conditions are derived in case 2, where we allow the 

switching times to vary. Before pursuing this case, notice that the second variation in 

equation (120) contains only spatial integrations around the boundary of the well. Since 

the diameter of the well is small compared to the domain of the aquifer, allowing Ti-> 0 

allows these integrals to become evaluation of the integrand at the location of the 

pumping well, as we saw in Theorem 6 and above in deriving (123). Thus, letting Ti-> 0, 

equation (120) becomes 

2524Q,c,X;Ati,h,(i] = 

i    |f'cch? + 'o       ctct    ' 

a. 
rec       ^    cc, h2 dt 

+ t([l -f.£, -fc,£B +l,c?K +2[fc -L,ct]SciAti +fCCi5c^_x 
i=l 

t,-0 

ti+0- 

(124) 

Now, we define the following terms to write (124) in a compact form 

P(,)(t)=-fCiC|[t,Q
l,,(t),cl,J(xw,t),c;"(xw,t)], 

R(iHt) = |{fcat,Q(i)(t),c(i)(xw,t),cIiHxw,t)]-|fcJt,Qci)(t),c(i)(xw,t),c:i)(xw,t)]f) 

Ir- 
in: ?=-[ft-fec.-fcS«+L.£?] t,+0> 

(125) 

mi?=<=T[f6-LA]„ 
ti-o 
t:+0> and        ^^pcJ^JlS- 

100 



With these definitions, the second variation of the Lagrangian can be written as 

. n-l 

524Q,c,X;Ati,h^] = f(P(t)^(t)+R(t)h2(t))dt + X[Ati   &,]• 
u i=l 

At; 
5c, 

(126) 

Note that the superscripts on P and R are suppressed, and understood to change on each 

time interval of the above integral. 

The next case examines the possibility of varying the switching times while the 

variation of the concentration is also nonzero. Additional necessary conditions arise from 

this case and aid the analysis of general classes of functionals, presented in Chapter VII. 

Case 2. This case establishes necessary conditions at the switching times, produced by 

examining the possibility of a nonzero variation of the concentration on consecutive 

intervals of time, (Figure 9). Suppose 

(i)    h(xw, t) = 0 V t s [0, ti-i] u [ti+i, tf] 

(ii)    Ati*0,    Atj = 0 Vj*i 

(iii)  8ci*0,    8cj = 0 Vj*i. 

With these assumptions, the second variation in (126) becomes 

82i[Q,c,X;Ati,h,MJ = ri+,(P(t)hJ + R(t)h2)dt + [At;   5cJ-M (i) 
At, 
8c, 

(127) 

where M(l) represents the matrix in (126) with elements defined by (125). 
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h(xw, t) 

h*0 

h = 0 

Figure 9. The variation of the concentration, h(xw, t), is nonzero on consecutive 
intervals of [0, tf] and zero elsewhere. 

The analysis of (127) requires a simplifying assumption for the relationship 

between 8ci and At;. A linear relationship was assumed and could be justified by the 

choice of a specific variation h. Thus, we assume 

8C;   =J£Atj, (128) 

where X e R. With this linear relationship, any specific h(xw, t;) could be defined by the 

choice of X. Theorem 3 requires that (127) should be nonnegative for all admissible 

values of h. With the choice of the relationship in (128), we need (127) to be nonnegative 

for any real X.   Using (128) in (127) we have (suppressing the i's on the elements of 

M(i)) 

824Q,ci;Ati,h,^i]= f,,+'(P(t)h? +R(t)h2)dt + [l   X]-Mil) ■ At 

= Jti+'(P(t)hf +R(t)h2)dt + (mn +2foi12 +I2m22)At2 >0 
•i-i 

(129) 

for all i = 1, 2,... n-1. Recall, from equation (58) we have 
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h(xw,ti) = (l-ct)Ati   which implies Ätt =      "' '  . (130) 
't 

Substituting Ati from (130) into the inequality of (129), we have 

|"'(p(t)h;+R(t)h')dt+
m"+?ym";I'm-h'(x,.ti)>0. (131) 

Lemma 5 asserts that a necessary condition for (131) to hold is that 

mn + 2#mp +X2m22 
P(t,)+    "    (y_^)2 "*0 t^t^t^ (132) 

for all real X, where P(t) = mini lim P(i)(t), lim P(i+,)(t) \.    In order to satisfy the 
Lt->tf t—»tj* j 

inequality in (132) for all possible values of X, we must have 

m11+23ftn12+]t2m22>0 (133) 

The left-hand side of inequality (133) represents a parabolic function {(X), which 

is concave up and has at most one real root. The roots of this equation are given as 

-mn±M-m„.^ (134) 
m. 

,m22 

'22 

or we can write 

-„„tJ^M^ (B5) 
1'- m m22 
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To ensure (135) has at most one real root, and since i is arbitrary, we have the necessary 

conditions 

detM(i)>0 (136) 
and 

m22>0 (137) 

for all i = 1, 2, ... n-1. Recall, (133) is also necessary for all Xe R. Two special cases 

arise from examining the admissible values of X: (a) X = 0 and (b) X -> ± °°. The first 

case would arise from allowing 8c; to be zero while allowing At; to vary, and the second 

case occurs while allowing Ati to be zero while allowing Sei to vary. 

Case (a):   If 1=0, then (133) becomes the necessary condition 

mu>0 (138) 

Case (b): If X-> ± °°, then (133) implies that m22 > 0. But the necessary condition in 

(137) is stronger, so nothing more is gained here. 

With the NOCs derived in the inequalities in (123), (136), (137), and (138), the 

theorem has been proved. D 

5.3      Summary 

This chapter developed the second variation of the Lagrangian and proved a 

necessary conditions theorem by examining the admissible variations h, Ati; and 8c;. The 
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analysis led to necessary conditions for a minimal solution to the optimization problem of 

Chapter El, which are contained in (123), (136), (137), and (138), restated here as 

fec[t,Q(i)(t),6(i)(xwt),cil)(xwt)]^0 (139) 

for all te [tu, t;], and for all i = 1, 2,... n, 

and 

det M(i) > 0, 

[ft-fcct-fCtctt+fCCtc?]x=xJ;;;:>o, 

[L]   |K>o L l J X=zX... I    ' 

(140) 

(141) 

(142) 

for all i = 1, 2,... n-1, where IVr is given as (>). 

M-=- 
(ft-fcet-fCtctt+fCCtet) 

(f.-Ut) 

t,-0 
t,+0 

t,-0 
t,+0 

[*c       ^cot
Ctj t,+0 
tj-0 

t,+0 

The next chapter presents the analysis that led to sufficient conditions for a 

minimum solution. A theorem is presented which guarantees the quadratic functional 

(127) is positive definite, as required by Theorem 4, thereby establishing sufficient 

conditions for a minimum and leading to a sufficiency theorem that lists the conditions 

which are both necessary and sufficient for a minimal solution. 
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VI. Sufficient Optimality Conditions 
for a Minimum 

The first and second variations of the Lagrangian have thus far provided necessary 

conditions which must be met by any solution that minimizes the optimization problem 

presented in Chapter ffl.  That is, given that (Q, c, i) is an optimal solution, then the 

necessary conditions of Chapters IV and V must be satisfied by this solution to be a 

minimal solution.   The goal of the current chapter is to establish conditions which, if 

satisfied, will guarantee this solution is a minimal solution. That is, given that (Q, c , A) 

satisfies these sufficient conditions, then the solution is, in fact, a minimal solution for the 

optimization problem. 

As discussed in Chapter ffl, the theory presented in this chapter builds on the 

notion that the second variation of the Lagrangian must be positive definite at (Q, c , X), 

given that the first variation of the Lagrangian vanishes there.   The first section of this 

chapter motivates the theorems presented in the sections that follow.   Again, as in the 

analysis of the first and second variations, the motivation comes from the examination of 

the simplest variational problem (equation (31) of Chapter ffl), which in turn leads to 

both necessary and sufficient conditions for the second variation of the Lagrangian to be 

positive definite.    The so-called Secondary Variational Problem is developed and 

analyzed in section 6.2, and the analysis leads to a definition of the important concept of a 

conjugate time.   Also, this section motivates the theorems presented in the subsequent 

sections of the chapter which establish positive definiteness of the second variation of the 
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Lagrangian, as well as sufficiency conditions for a minimal solution for the optimization 

problem. 

6.1      Motivation 

In this section, we return to the simplest variational problem to establish the 

direction for the analysis that follows. For the case of the simplest variational problem, 

we seek to find an extremum for the functional in (31) which satisfies the boundary 

conditions in (30). Assuming that the first variation of the functional in (31) vanishes at 

some optimal y, then the pursuit of an extremal for the functional reduces to an analysis 

of the second variation of (31), given by the quadratic functional 

[b(Ph'2+Qh2)dx, (143) 
a 

defined on the set of admissible functions h(x) which satisfy the homogeneous boundary 

conditions h(a) = h(b) = 0. For this problem, the functions P and Q are related to F in 

(31) as 

P=-F.„ Q = T Fvy-T"Fyy' r    £  y'y' ^    2\ yy    dx  yy) 
(144) 

Application of Theorem 3 to the simplest problem leads to the necessary (but not 

sufficient) condition that P(x) > 0, for all xe [a, b], for the quadratic functional in (143) to 

be > 0 for all admissible variations h(x). If we assume the strengthened inequality 

P(X)>0, (a<x<b) (145) 
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holds, we can then find conditions which are both necessary and sufficient for the second 

variation to be strictly positive for all admissible h, such that h(x) = 0 does not hold. That 

is, we find necessary and sufficient conditions for (143) to be positive definite. 

As suggested by Gilbert A. Bliss (1925) (Sagan, 1969:396), we consider the so- 

called secondary variational problem 

Minimize:      A[h] = f (Ph'2 + Qh2 )dx, 
(146) 

with boundary conditions h(a) = h(b) = 0. 

For h(x) to yield a minimum for the functional in (31), it is necessary that the first 

variation of the quadratic functional A with respect to the variation h must vanish. That 

is, if h is an extremum, then 5A[h;k] = 0 for all admissible values of the variation k. 

With this in mind, wc apply Definition 1 to (143) to find the first variation of A 

5A[h;k] = lim^-i',[P(h' + ak02+Q(h + ah)2]dx = Ph'k|1;+J; --^-(Ph') + Qh 
dx 

kdx. 

Since the boundary conditions on h are homogeneous, then so are the boundary 

conditions on admissible k, and a necessary condition for 5A[h;k] to vanish for all 

admissible k is that the second order differential equation, 

-(Ph') + Qh = 0 (147) 
dx 

must hold for all x € [a, b]. Equation (147) along with the boundary conditions in (146) 

are   satisfied   by  the   function  h(x) = 0.   This   trivial solution   may not be the only 
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solution. To develop a test for uniqueness, we begin with the definition of a conjugate 

point. 

Definition 4. The point a is said to be conjugate to the point a if the equation (147) has 

a solution which vanishes for x = a and x = a buy is not identically zero (Gelfand & 

Fomin, 1963:106). 

This statement of the definition of a conjugate point and the strengthened 

inequality in (145) lead to the next theorem. 

Theorem 8.   The quadratic functional 

f(Ph'2+Qh2)dx, 
a 

where 

P(x) > 0 (a < x < b), 

is positive definite for all h(x) such that h(a) = h(b) = 0 if and only if the interval [a, b] 

contains no point conjugate to a (Gelfand & Fomin, 1963:111). 

The theory that led to the definition of a conjugate point drives the analysis 

presented in the next section, while Theorem 8 serves as the impetus of a positive 

definiteness theorem for the second variation presented in the subsequent section. 

Finally, Section 6.4 ties together this entire document into a theorem which states 

sufficient conditions for the existence of a minimal solution for the optimization problem 

we have been examining. 
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6.2      The Secondary Variational Problem and Conjugate Times 

Motivated by the theory presented in the previous section, we now examine the 

ondary variational problem for the quadratic functional in (126), restated as sec 

A[h,At,5c] = ff(P(t)h? +R(t)ha)dt + SK   8c,]-M 
0 i=l 

(i) 
Ati 

5c; 

(148) 

where P(t), R(t), and M(l) are defined by (125) and the vectors At and 5c have elements At, 

and Sei, respectively for i = 1, 2, ... n-1. Here, we treat the second variation of the 

Lagrangian as a function of its variations and seek to find conditions that assure A is a 

positive definite quadratic functional, thereby providing sufficient conditions to verify our 

solution is minimal. We start by considering admissible variations h such that h ^ 0 for 

t 6 [0, t„] u [tI+1, td which hnplies Atj = SCj = 0 for all j * i (Figure 9), so that (148) can 

be written as 

A[h,At1,8c,] = |;;(P(t)h? +R(t)h2)dt + K    8c,] • M (i) 
At, 
5c: 

(149) 

As in the case of the simplest variational problem, we now state the secondary 

variational problem as 

Minimize:     A[h, Ati, 5c;], 

such that h(ti-i) = h(ti+i) = 0 

for all i = 1, 2, ... n-1.   The variational problem in (150) suggests that the solution 

(h, Atj ,5c;) yields a minimum of A if the variation of A at (h, At; ,86,), denoted as 
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8A = SA[h,Ati,8ci;k,S(Ati),8(Sci)], (151) 

vanishes for all admissible variations <k,8(AtO,8(8cD).    In analyzing the variational 

problem in (150), we arrive at a definition for conjugate times that is similar to Definition 

4 of the previous section. 

We begin the analysis by first determining the variation of A at (h,Ati,8ci). 

Without loss of generality, assume At; > 0, then 

5A = lim—1 
a->o da 

Hp(h,+akt)
2+R(h + ak)2]dt 

■i-i <- 

Ati + aöfAtJ 
8c; + a8(8ci). 

(152) 

where the interval of integration can be written as 

[ti-i, ti+i] = [ti-i, ti] u [ti, ti+Ati+a8(Ati)] u [ti+Ati+a8(Ati), ti+i]. 

Using Leibnitz's rule and taking the limit in (152), we have 

5A = 2jfw[Phtkt + Rhk]dt + (Ph? +Rh2)|;;;:;;:5(Ati) + 2[Ati   &J-M» 
8(Ati)' 

fife). 
(153) 

Notice that the superscripts on the second term of the right-hand side of (153) have been 

suppressed for notational convenience, and it should be understood that P and R are on 

the (i+1) interval since At> > 0 was assumed. Because of the boundary conditions in 

(150), we assume k(tM) = k(ti+1) = 0, thus integrating (153) by parts yields 
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5A=2j4 i(Pht)+Rh kdt+(ph? +Rh2)|;;::;;:5(Ati) 
li-iL   at -I 

+ 2[Att   8Ci]-M
(i) 

5(At;) 

Ls(«ci). 

(154) 

Now, assume (h, At, ,8c.) minimizes A. Then setting 5A = 0 for all admissible variations 

(k,5(Ati),5(5ci)) leads to three special cases. 

Case 1. Assume S(AtO = 5(5c.) = 0. Using the same procedure as that used in Chapters 

IV and V, we have the following subcases from setting 8A[h,At; ,86,^,0,0] = 0: 

(la) k = 0 Vte [ti,ti+i] implies --(Pht) + Rh =0 Vte [U-iA)- 

(lb) k = 0 Vte [ti.1,ti]u[ti+Ati.ti+1]impües--(Pht) + Rh=0 Vte (t„ tI+Atl) 

(lc) k = 0 Vte [ti_i, ti+Ati] implies --(Pht) + Rh=0 Vte (ti+Ati, ti+1]. 

The necessary conditions provided by case (1) reduce the first variation of A (considering 

the set (h,At; ,86;) is optimal) in (154) to 

5(At,) 

.5(50,). 

(155) 

Case 2.   Now, assume 5(8C[) = 0 and 8(M) * 0, then setting(155) to zero, we have 

«AMVK.M*^ (156) 

Since 8(AtO * 0, then we have the necessary condition 
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m X+m^c^-^PhJ+Rh2) 
tj+Atj-0 

t,+At,+0 ' 
(157) 

reducing (155) to 

8A[h, Atj ,6cj] = 2[m21At; + rn^ScJ • 5(5Ci) = 0 (158) 

which leads to the final case. 

Case 3.  Finally, assume 8(8cD * 0.then (158) produces the necessary condition 

m^Ati+m^Sc^O. (159) 

Combining all three cases, we have the following necessary conditions for any optimal 

solution (hjAtpScJ 

--(Ph>Rh = 0 
at 

Vteta.tJ-fc+Ati.tJ, (160) 

and 

M (i) 
At; 
5£; 

(Ph*+Rh2) 

0 

ti+Atj-0 
t j +Af; +0 (161) 

Also, since i was chosen arbitrarily, then (160) and (161) hold for any i = 1,2,... n-1. 

The necessary conditions in (160) and (161) resulted from an examination of the 

secondary variational problem. Recall, in the previous section, the similar analysis led to 

a definition of a conjugate point. We now state an analogous definition for the present 

problem. 
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Definition 5.   (Conjugate time) The time t e (a, b] is said to be conjugate to a if there 

exist numbers c e R and A € (0, b-c), and a function u(t) where 

u(1)(t) a<t<c 

u(t) = \ u(2) (t) c<t<c+A, 

u(3) (t) c + A < t < b 

such that u(t) satisfies the boundary value problem 

--(P(,yi}) + R(1)u(1)=0 a<t<c, 

_£(p(2)u(2)) + R(2)U(2)  = 0 C < t < C +A, 
at 

_A(p(2)u(3)) + R(2)u(3)=0 
at 

where 

Pu,(t) a< t <c 
PfO = 1 »     and W    y2)(t) c<t<b 

and such that 

c + A< t< b, 

R(t) 
Ru,(t) a< t<c 

R(2)(t) c<t<b 

P'Vl^P'V'U     u("|t=c=u(2)|t=c,  and    u(2)|l=c+A = u^|t=c+A 

Additionally, 

M(L)- 
At, 
5c, 

'(p^uff +R(2)(u(2))2)|_A-(P(2)(uf))2 +R(2>(u^r t=c+A 

where M(i) is a constant matrix whose coefficients are determined by (125) for any choice 

of i, and P(t) and R(t) are also as stated in (125); such that u(a) = 0 and u(t) = 0 but u(t) 

is not identically zero (Figure 10). 
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Figure 10. The time t is conjugate to the time a (Definition 5). 

With the statement of this definition, the next section presents a theorem which 

establishes necessary and sufficient conditions for the quadratic functional in (126) to be 

positive definite. 

6.3      Positive Definiteness of the Second Variation of the Lagrangian 

This section establishes the positive definiteness of the second variation through 

the following theorem (note that P, R and M(,) arc defined by (125)). 

Theorem 9.   The quadratic functional 

A[h,Ati,5ci] = j'i+'(P(t)h? +R(t)h2)dt + Ä^-M(i) -ÄV, 

where A^ = [At;    5c;], 

Pw(t) ti!  < t < t£ 
and 

(162) 

Rw(t) tj.^Kti 
R(t)=|R^(t) t1<t<tw' 

kP
l,+1'(t) t^Kt,, 

such that P(t) > 0 for all t € (tu, tj) u ft, ti+i), and M(i) is a nonnegative definite matrix 

(denoted by M(i) > 0), is a positive definite functional for all h(t) such that h(ti) = 0 and 

h(ti+0 = 0 if and only if the interval [tu, ti+i] contains no conjugate times to tu. 
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Proof.   (<=) The fact that the functional in (162) is positive definite will be proved if we 

can reduce it to the form 

J^'PCtydt + Äf-M^Ä, 
•i-i 

where (p2 is some function which cannot be identically zero unless h(t) = 0 and M(l) > 0. 

To achieve this goal, we add a quantity of the form ~7~(wh2) to the integrand of (162), 

where w(t) is a differentiable function, which is continuous at tj.  Notice, because of the 

corner at t; and since h(ti_i) = h(ti+i) = 0, then 

{l,4(wh2)dt-(wh2)|^=0, 
li-i at 

where h(tO = h(xw,tj) = 5ci - ct(xw,ti)At,. Now, choose w(t) such that 

Ph: + Rh2 + —(wh2) = Ph2 +2whht +(R +wt)h2 

dt 

is a perfect square and the expression 

Äjr-M<i)-Äi-[w(8ci-ctAti)
2] ti-0 

t|+0 

is nonnegative for any A;. 

Notice, the second term in (164) can be written as 

[w(5Ci -ctAti)
2|;;;: = w(5c2 -2c.5c.At, +c2At2) 

(163) 

(164) 

tj—0 

t,+0 

= A 

t,-0 
w|t,+o 

ti-0 

ti-0 
-wct ti+0 

-wc, 
2 Hi-0 

ti+0        WCt   ti+0 

•Ai; 

and since w(t) is continuous at ti; then (164) can be written as 
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Äf.M^-Ä^^-c.ÄtJ'l^^A^- 
m, 

m12 + wct 
t,-0 
ti+o 

m12 + wct 

m^ - wc? 

t,-o 
ti+0 

ti-o 
t,+0 

•A: 

= A^-M(i)-Ai. 

According to a well known result, sometimes called Sylvester's criterion, a 2 x 2 matrix 

A is nonnegative definite if and only if the descending principal minors 

and 
ail       ai2 

a21    a22 

of the matrix are both nonnegative. For the matrix M(i) above, we know that the term 

an = mn is necessarily nonnegative by (138). Thus, if detM(i) is nonnegative, then the 

matrix M(i) is nonnegative. Therefore, computing the determinant 

detM(i) =mu(m22-wcf|;;;j)-(m12+wct [$) 

= mHm22 -^-[mn(cf)|;;J+2m12(ct|;;;o)]w(ti)-(ct|;;;o) [w(t;)]2, 

a detMt'^Y ß 

where w(ti) has been factored out since w is continuous at ti. Thus, we can write 

detM(i)=a[w(ti)]2+ßw(ti) + Y, (165) 

where a < 0, Y^ 0, and ß could be positive, negative or zero, and we will assume it is not 

zero. We see that (165) is quadratic in w for any fixed i. If the quadratic (165) has two 

real zeroes, then there exists w such that detM(i) > 0, implying that M(l) > 0. This will be 

the case if 

ß^_4ay = ß2-4[-(ct|;^)2detM(i)]=ß2+4[(ct|;;;°)2detMw >0, 
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which is true, as long as ß * 0. Thus, (165) has two real roots for any choice of i which 

implies w(t) exists such that M(l) > 0. 

Let W = {w| w is continuous at t; and M(i) > o} and choose we W such that 

P(R + wt) = w2. (166) 

If (166) holds on the entire interval [tu, ti+i], then the quadratic functional (162) can be 

written as 

f+'pfht+-hTdt + Ä1
T-M(i)-Äi, (167) 

«i-i  ^       P   J 

and is therefore nonnegative.   Since P > 0, then (167) will vanish only if the following 

both occur simultaneously: 

ht+jhs0 te[ti_1,ti+1]-{ti,ti+Ati} 

and (168) 

ÄTM(i,ÄiS() t.e^tj. 

The boundary condition h(tn) = 0 implies h(t) = 0. Since h = 0 for all t, then At; = 5c, = 0 

and ÄjW'Äj =0. So, both conditions in (168) occur only if h(t) = 0, and it follows that 

(167) is actually positive definite. 

Now, the proof has been reduced to showing that the absence of times in [tu, t;+i] 

which are conjugate to ti-i guarantees (166) has a solution defined on the whole interval. 

First, we introduce the change of variables 

u(1)(t) ti-l<t<ti 

w = -—p, where u(t) =' u(2)(t) t;    <t<t;    +At; 

lu(3)(t) ti+Ati <t<ti+1 

into (166), where u is a new unknown function such that 
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(i)„(l) PWU 
_p(i+Dn(2) 

t=t; r Ut 
.(') = u(2) 

t=tj   ' and  u (2) 
t=ti+Atj = u(3) 

t=ti+Atj ' 

then equation (166) becomes 

-^(PVO+R'V^O 
3tv       ' ; t^Kt,, 

4(p(i+iy2))+R(i+1v2)=o 
at 

t <t< t +At;, (169) 

-:Hp(i+ly3))+R(i+1)u(3)=o 
3tv ! t;   +At:   <t<t "1      —"1 i+1' 

If there are no times conjugate to tu in (tu, ti+i] then (169) has a solution which does not 

vanish anywhere in (tu, t;+i]. Since the solution to the differential equation in (169) 

depends continuously on the initial conditions, then [tu, ti+i] contains no times which are 

conjugate to ti-i - e for some sufficiently small £ (Sagan, 1969:402). Therefore, a solution 

exists for (169) which does not vanish anywhere in [tj-i, t;+i] which implies (166) is valid 

throughout the entire interval and in turn, (162) is positive definite. 

(=>) Suppose now that t,.\ < t < Ui, that is, the interval (tu, ti+i) contains at least one 

time which is conjugate to tj-i, which implies there exists a nontrivial solution h = h*(x) 

of equation (169) such that 

h*(ti.i) = h*( t )■= 0,    but h*(t) # 0 for t e (tu, t). 

Since h = h(t) = 0 is also a solution of (169), then the function 

h = h(t)s' 
h*(t) 

0 

for t;.! < t < t 

for t < t < t 
(170) 

i+l 

is a sectionally smooth solution of equation (169) (Figure 11).   Choose t < tj then the 

quadratic functional given by (162) becomes 
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ti+l t 

Figure 11.   A nontrivial solution h for equation (169). 

A[h,Ati=0,5ci=0] = f [p(h*)2+R(h*)2]dt, 

since h(t;) = 0 implies At, = 5c, = 0. Integrating the above expression by parts, we have 

3 
h* -—(P(h*),) 

ii-i      L   dt 
+ Rh: dt = 0, 

since we know that h*(ti_i) = h*(t) = 0 and h*(t) satisfies (169). Thus we have shown 

that A[h,Atj =0,5ci =()] = (). Suppose that 0 is the minimum of Af^At^ScJ, then it is 

necessary that h = h(t), which produced the minimum value 0, must satisfy the corner 

condition at t = t (equation (83), for example) 

Sh,   t-0       Sht t+0' 

where g = Ph2
t + Rh2. Since gh = 2Pht, then for h = h(t) we have 

j_0=2P(t)(h*)t(t) 

and (171) 

t+0 = 0. 

By hypothesis, we have assumed P(t) > 0 holds for all t e [tj.i, ti+i] and thus, the 

corner condition (171) can only be satisfied if (h *)t (t - 0) = 0.  Since we also know that 
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h*(t) = 0 then it follows that h*(t) = 0 for all t e [tu, t ], violating the assumption that 

we have a nontrivial solution, h = h*(t), for equation (169). 

Since h = h(t) defined by (170) does not satisfy the necessary condition for a 

minimum stated in (171), then A[h, At; = 0,8c; = 0] = 0 cannot be the minimum of the 

quadratic functional A. Hence there exists a function h = h(t) with a corner at t = t such 

that A[h, At; = 0,8c; = 0] < 0. Then, by a well known result sometimes referred to as the 

fairing theorem [Sagan, 1969], there exists a function h e C^tn, ti+i], h(ti-i) = h(ti+i) = 0, 

such that Afh.AtijScJ < 0. Thus, we have proven that the existence of conjugate times 

to ti-i in the interval (tu, ti+i] implies that A is not positive definite. By the contrapositive 

proof form, this is true if and only if A is positive definite implies that the interval 

contains no conjugate times. D 

With the proof of Theorem 9, we have all the pieces needed to state the sufficient 

conditions for the existence of a minimum solution for the optimization problem of 

Chapter III. Thus far, we have established necessary conditions for a minimum all of 

which could be considered separately, since each is necessary by itself. The sufficient 

conditions stated in the next section, which are similar to the necessary conditions, must 

be considered as a set since a minimal solution is only guaranteed if all the conditions are 

satisfied simultaneously. 
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6.4      Sufficient Conditions for a Minimum 

This section presents a set of conditions in the form of a theorem which, if met by 

any admissible functions (Q, c, X), then the Lagrangian given in equation (39) is 

guaranteed to have a minimum for the given solution. Again, these sufficient conditions 

are presented as a set, and the presence of an extremal is only assured if all the conditions 

are satisfied. 

Before examining this theorem, we must define a norm for the space in which we 

are working. Notice, if the functions (Q, c, X) minimize the Lagrangian in (39) then the 

increment of I, defined as 

A2 = 2(Q + K,c + h,! + uW(Q,c,i), (172) 

must be nonnegative, where (Q+ K,c + h,A,+fi) are functions sufficiently close to the 

functions (Q, c, X). In determining the closeness of these functions, we make the 

following definition. 

Definition 6. Let S = {Q(t):[a, b] -» {0, QON}, such that Q(t) is piecewise constant}. 

Given that Q e S, c € C![a, b], and X e C[a, b] define the norm ||*||T by 

I(Q,C,A.)IT =|QI|^ +WI, +IWI0, 

such that 

||.   =Jb|Q|dt, Held =max|c(t)| + max|ct(t)|,    and        ||Aj|0 = max|X(t)|. 
ILi a '     ' a<t<b a<t<b' ' a<t<b 
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Note that two functions (Q, c, X) and (Q, c, X), defined on the interval [a, b] as stated in 

Definition 6 are regarded as close together if 

m,c,X)-(Q,c,X) „ <e 
i 

for all e > 0. 

Theorem 10. Suppose that for some admissible functions (Q, c, X) the Lagrangian (39) 

for the optimization problem defined by (24) - (27) satisfies the following conditions: 

1. The functions (Q, c, X) are an extremal, and hence the first variation of (39) 

vanishes; implying that the conditions stated in (75), (78), (81), (83), (84), (89), (91), and 

(95) are met. 

2. For the functions (Q, c, X,), 

1 no, Pt0 (0 s 2 f-c [W W'£   (xwt)>£t (xwt)] > 0 (173) 

all te [tj-i, t;], and for all i = 1,2,... n, and 

M(i) > 0 

all i = 1, 2,... n-1, where M(l) is given as 

M(i)=- 
2 

(ft-fcct-fCictt+f CC,Ct  j 
tj-0 

tj+O 

tj-0 

tj+O ff   -f \   0          cc 

cc, 

A) 
tj-0 
ti+0 

ti-0 
t,+0 

(174) 

and 

mn =ÖLft -foct -fctctt +fcc,ct J       t;+o ^0, 
Z x—xw 
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3. The time interval [tu, tj+i], contains no times which are conjugate to the time ti-i, 

for alii = 1, 2,... n. 

Then the functional in (24), constrained by the conditions in (25) - (27) has a minimum at 

(Q, c, X) with respect to ||*||T. 

Proof. The theorem is proved if we show that, for any sufficiently close (in the sense of 

1*11) functions to those given as the extremal (Q, c, X), the increment in (172) is positive. 

Suppose the functions (Q, c, A,) and (Q + K,c + h,A,+|i) are sufficiently close. That is, 

given £ > 0, then 

||(K,h,|jL)||T <e, 

which implies 

||K||Li<e, flhl^e,    and        |HI„<e- 

Thus, we can use Taylor's theorem to find that the increment can be written as 

Al = l(Q + K,c + h,% + \i) - KQ,c,i) 
(175) 

where a is an infinitesimal of order higher than 2 relative to |(K,h,(j.)||T (Gelfand & 

Fomin, 1963:101). The first term above is the first variation of the Lagrangian which 

vanishes according to condition 1, and the second term is the second variation of the 

Lagrangian, stated in (126). Alternatively, (175) can be written as 
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n-1 f. Jtl 

A/ = J,t(P(t)hf+R(t)h2)dt + I;A^M(i).Ai+Jlt,(Tl^+^h2)dt + £A1
T•M(i)•Ai,   (176) 

0 i=l ° i=l 

where £(t), rj(t), and mjjk(t;)-» 0 as |(K,h,ji)||T-> 0 and mjk(t;) are the elements of the 

matrix M(i). Thus, 

|£(t)|<e, (n(t)|<e, and &iX(t{) <e. 

for 0 < t < tf, and for all i =1, 2, ... n-1. The last two terms in (176) are the remainder 

terms of the Taylor series expansion of the increment of (175). Notice that 

|(K,h^)|T^0, 

implies that 

||K||Li -> 0, Ihll, -> 0,       and |u|0 -> 0. 

Since the Lagrangian is affine in the multiplier X, then the higher order terms in \i vanish. 

Also, recall that a variation of the pumping rate, Q(t), depends on the switching times of 

the pump status. Thus, 

||K|Li=f|Q + K-Q|dt = Q0NE|Ati 
a i=i 

and ||K||L  -> 0 implies that \AV\ -> 0 for all i = 1, 2,... n-1. Finally, recall from (58) that 

h(t1) = 8c1-ct(ti)Ati, 
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then IhÜ! -» 0 means that 

IhCoH&i-c.dJAt.l-XX 

Since |h(tj)| -> 0 and |AtJ -» 0 for all i = 1, 2,... n-1, then we must have jScJ -> 0 for all 

i = 1, 2,... n-1. Combining all these facts, we can restate (176) as 

A£ = lt'(P(t)h?+R(t)h2)dt + l;Ä^M(i)-Ai+l,t(tihf+^h2)dt + £A^M(i)-Ai, (177) 
i=l i=l 

where %(t), T|(t), and fhjk(ti)-> 0 as ||h||j -> 0, jAtJ -» 0, and pcj -> 0 for all i = 1, 2,... 

n-1. So, for two sufficiently close functions, the variations h, Ati; and 8c; are small. 

Next, we examine each term in (177) to show that this expression is always 

positive. Consider the first two terms in (177). If the interval [tj.i, ti+i] contains no times 

which arc conjugate to tj.i, and if P(t) > 0 in [tu, ti+i], then we can find a larger interval 

[tu, ti+i + E] which also contains no times which are conjugate to tj.i, such that P(t) > 0 in 

[t;_i, ti+i + e] [Sagan, 1969]. Consider the quadratic functional 

HpCDhf+RCOh^dt-a'J^'hfdt + ÄT.M^-Äj. (178) 
'i-i '/-l 

Since P(t) > 0 in [tu, ti+i + e] and hence has a positive lower bound on this interval, then 

for all sufficiently small a (and assuming Atj > 0), we have 

(a)       P(t) - a2 > 0, for all tu < t < ti+i. 

(b)       The solution of the differential equations 
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■^[(p(i)-a2)hi"] + R(1)h(1)=0 tw<t<tlf 

•|-[(P(i+1)-a2)h[2)] + R(i+1)h(2)=0 t^Kti+Atp 

^[(p(W)-a2)hj3,]+R(i+1)ht9) =0 ti+At^Kt^, 

where h(l) is defined on the intervals above, satisfying the boundary conditions 

h(ti-i) = 0, and ht(ti_i) = 1 does not vanish for t;.i < t < tj+i. 

As shown by the proof of the sufficiency statement of Theorem 9, these two conditions 

imply that (178) is positive definite for all sufficiently small a. That is, there exists some 

real number c> 0 such that 

j'^PWhf+RWh^dt + Ä^M^-Ä^cf'Xdt. (179) 

Since i is arbitrary then (179) is true for all i = 1, 2,... n-1. Thus we can write 

Jtf(P(t)h2 +R(t)h2)dt + 5AT-M(i)  A"; >cf'hfdt. (180) 
i=l 

Next, using the Schwartz inequality, we find 

h2(t) = (fht(x)di)2 < f l2 • h2(T)dx = tPh2(x)dx < tftf h2(t)dx, 

and integrating this expression, we then have 
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fVwdt^Ncodt. 
2"o 

Given that |^(t)| < e and [rj(t)| < e, the statement above implies that 

l[>h2^h2)dt <£ 

v    z y 
J>2(t)dt. (181) 

Finally, we examine the remaining term in (177). From the triangle inequality we 

have 

SA^M(i)-A, 
n-l 

(182) 

<X|A^-M(i)-A;| 
i=l 

n-l 

= X|mn At? +2m^)Ati8ci + m£)8cf| 
i=l 

< ^m^At? +2|fnii)|-|Ati|-|8ci| + |m^|8c? 
i=l 

n-l . 

<Ymaxffi?> -(At?+2At • 8c; + 8cf 
"™  ;_i n J,K,I    \ I'll1! l / 
l_i   k=l,2 

n-l 

<e]T(At2+2|Ati|-|8ci| + 8c2). 
i=l 

Combining the inequalities of (180), (181), and (182), we have 

P'(P(t)hf +R(t)h2)dt + SÄ^.M(i) .Äs + J>ht +^h2)dt-fXÄ^-M(i) Ä 
0 i=i 

>cl'h:dt-i 

Since e > 0 can be chosen to be arbitrarily small, the expression above will be positive for 

i=i 

n-l 

^l + ljl'^Wdt-eStAtf+^AtJ-IScJ + Scf). 

all sufficiently small |(K,h,|i)|L and the extremal (Q, c, X) corresponds to a minimum of 
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the optimization problem of Chapter HI.   This proves the theorem, and establishes 

sufficient conditions for the existence of a minimum with respect to the norm ||*||T.        D 

6.5      Summary 

Theorem 10 concludes the variational analysis of the optimization problem of 

Chapter DI, and with it we have the desired necessary and sufficient conditions needed to 

establish a minimal solution. In the next chapter, we examine various combinations of 

the independent variables t, Q(t), c(t), and ct(t) for the functional presented in (24) to 

establish NOCs and SOCs for general classes of functionals. Several specific examples 

are also presented and discussed. 
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VII. General Classes of Functionals 
and Examples 

The analysis presented thus far in this document develops a mathematical tool 

which can be used to derive an optimal pulsed pumping schedule at an existing pump-and 

-treat remediation site. This chapter investigates general classes of functionals, for which 

we seek to determine if an optimal pulsed pumping schedule is feasible, and then looks 

more closely at specific classes of interest. 

The first section of this chapter examines the 15 different possibilities for 

different combinations of the independent variables in the argument list of the objective 

functional. Additionally, a comparison to Hartman's (1994) results is presented for the 

classes that are independent of the time derivative of the concentration. Finally, classes 

of interest are identified which arc further studied in section 7.2, leading to specific 

examples which demonstrate how the complicated analysis of the previous chapters 

reduces to simple, usable tests. 

7.1       Introduction: General Classes 

In this section, we examine the 15 different possibilities for the independent 

variables t, Q(t), c(xw,t), and ct(xw,t) contained in the argument list for the objective 

functional in (24). For those classes which are independent of the time derivative of the 

concentration, we compare to Hartman's (1994) results and draw conclusions about the 

feasibility of using pulsed pumping as an optimal remediation technique.   Further, we 
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examine the additional cases provided by considering ct(xw,t) as part of the objective we 

wish to optimize. The section concludes by identifying specific classes of interest which 

will be further examined in the remainder of this chapter. 

7.1.1 Comparison to Previous Results: Functionate Independent of Ct(xw,t). 

Consider the optimization problem (presented in Chapter IE) in two space dimensions 

where (24) is replaced by 

J[Q,c] =  Hf(t,Q(t),c(s,t))ds1dt, (183) 
U      I, 

constrained by the two-dimensional integro-differential equation, boundary conditions 

and initial conditions in (25), (26), and (27), respectively. For the functional in (183), we 

consider seven general classes of functionals to be optimized, dictated by the different 

combinations of the variables t, Q(t), and c(s,t); ignoring the time rate of change for the 

concentration as part of the objective functional. For this problem, suppose the functions 

(Q,c,)i) are an extremal, then the necessary conditions which generate the candidate 

optimal pulsed pumping schedule (equation (95)) become 

f[ti,Q
(1),c(xw,ti)]-f[t1,Q

(l+I),c(xw,ti)] 
r -,•» i (184) -c(xw,ti){fc[ti,Q

(l),c(xw,ti)]-fc[ti,Q
(l+1),c(xw,ti)]} = 0 

for all i = 1, 2,... n-1, where Q(l) and Q(l+1) are defined by equation (43) for the extremal 

Q(t). The roots, ti, of equation (184) are determined strictly by information about the 

contaminant concentration levels observed at the extraction well.   In turn, these roots 
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generate the switching times and establish a pulsed pumping schedule for a particular 

management objective. 

Suppose we consider a single cycle of a piecewise constant pulsed pumping 

schedule (Figure 2). Then, for the switching times ti and t2, equation (184) becomes 

and 

f[t1,QON,c(xw,t1)]-f[t1,0,c(xw,t1)] 

-c(xw,t1){fc[t1,QON,c(xw,t1)]-fc[t1,0,c(xw,t1)]}=0 

f[t2,0,c(xw,t2)]-f[t2,QON,c(xw,t2)] 

-c(xw,t2){fc[t2,0,c(xw,t2)]-fc[t2,QON,c(xw,t2)]} = 0, 

(185) 

(186) 

which are identical to equations (8) and (9), Hartman's necessary optimality conditions of 

the first variation for this functional on a radially symmetric aquifer. With this agreement 

of results, we can accept Hartman's analysis of the seven general classes determined by 

the various combinations of t, Q(t), and c(s,t) for the functional in (183) and his findings 

arc summarized in  Table 1 (Hartman, 1994:Ch 4). Since   equations (185) and   (186) 

Table 1. 

General Classes of Functionals Independent of ct(xw,t). 

General 
Class 

Nature of 
Equation (184) 

Pulsed Pumping 
Alternative 

Interesting 
Objectives 

f(t) identically zero yes no 

f(Q(t)) no roots no no 

f(c(xw,t)) identically zero yes no 

f(t, Q(t)) possibly distinct roots yes no 
f(t,c(xw,t)) identically zero yes no 

f(Q(t),c(xw,t)) possibly distinct roots yes yes 

f(t, Q(t), c(xw,t)) possibly distinct roots yes yes 
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represent a special case of (184), the information in Table 1 is stated for the general form 

of (184). 

The information about possible roots of equation (184) determines whether or not 

pulsed pumping is an option for a particular management objective chosen from one of 

the general classes. Notice, there are several possibilities for the roots of this equation. If 

the left-hand side of equation (184) becomes identically zero, then any set of tfs will 

provide a candidate optimal pulsed pumping schedule. In this case, the problem reduces 

to a search of possible pumping schedules which must be further tested by the necessary 

and sufficient conditions of the second variation. Additionally, the possibility exists that 

equation (184) has no roots, which implies no ti exists and the status of the pump should 

remain unchanged. Ideally, the functional classes of particular interest will have the 

possibility of yielding distinct roots of (184). Some specific examples of these classes are 

addressed in section 7.2. 

Next, we examine the general classes of functionals dependent on ct(xw,t), and we 

find that all combinations of the independent variables of the functional in (24) might 

provide interesting management objectives and non-trivial pulsed pumping schedules. 

7.1.2 Functionals Dependent on ct(xw,t). In this subsection, we examine the eight 

general classes of objective functionals that depend on the time derivative of the 

concentration at the extraction well. As in the previous subsection, we will examine all 

combinations of the independent variables of the functional in (24), and these general 

classes are evaluated for the possibility of using a pulsed pumping schedule. 
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Equation (95) is the general representation of the necessary conditions that 

indicate a candidate optimal pulsed pumping schedule. If all variables are present in the 

argument list of the objective functional (24), then the necessary conditions in (95) could 

be written as 

[f-f^-te+f^e+f^+f^ccj] I'lo = 0 (187) 

for all i = 1, 2,... n-1. Notice, with c,(xw,t) now part of the argument list of the objective 

functional, the roots of equation (187) are determined not only by concentration 

information at the extraction well, but also by information about the first and second time 

derivatives of the concentration, as well. Additionally, we need to know the information 

about the concentration and its derivatives both before and after the status of the pump 

switches from either on to off or off to on. In the cases considered in the previous 

subsection, we need only the concentration information at the extraction well, which is a 

continuous quantity. That is, concentration at the extraction well is the same for both 

before and after the status of the pump switches. Considering the rebound effects seen 

when rate-limited sorption is evident within the aquifer, we expect a discontinuity in the 

first and second derivatives of the concentration upon change in pump status. This 

presents a significant problem in implementing equation (187). This issue is discussed 

further in section 7.2. For the present, we examine (187) to determine the nature of the 

equation for different combinations in the argument list of (24). 

Analysis of equation (187) leads to four separate cases for the functional in (24): 

(1) the functional is independent of time and concentration,  (2) the functional is 
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independent of concentration, (3) the functional is independent of time, and (4) the 

functional depends on time and concentration. We see that the presence of Q(t) in the 

argument list of (24) does not effect any of the partial derivatives in (187), and thus leads 

to the four cases stated below and summarized in Table 2. 

Case 1. Functionals which are independent of time and concentration: f(ct(xWtt)) 

andf(Q(t),ct(xw,t). For this case, equation (187) becomes 

[f-fcA+fccCcJ] 
ti_0 = 0 t,+0       u (188) 

for all i= 1,2,... n-1. 

Case 2.   Functionals which are independent of concentration:  f(t,ct(xw,t)) and 

f(t,Q(t) ct(xw,t). For this case, equation (187) becomes 

[f - fCict + ftC(c + fC(Ctcctt)] x=Xw t;+0 = 0 
t.-o 

(189) 

for all i= 1,2, ...n-1. 

Case 3.    Functionals which are independent of time:   fic(xw,t),ct(xw,t)) and 

f(Q(t),c(xw,t),ct(xw,t)). For this case, equation (187) becomes 

rf-f £ -f c + f   cc +f   cc VI L1       ^c^t       1cL + 1cc,U't +1ctc,Ct'tt/J 
ti-0=0 t,+o     u (190) 

for alii = 1, 2,... n-1. 

Case 4.  Functionals which depend on time and concentration: f(t,c(xw,t),ct(xw,t)) 

andf(t,Q(t),c(xw,t),Ct(xw,t)). For this case, equation (187) remains unchanged. 

135 



Table 2. 

General Classes of Functional Dependent on ct(xw,t). 

General 
Class 

Nature of 
Equation (187) 

Pulsed Pumping 
Alternative 

Interesting 
Objectives 

f(ct(xw,t));f(Q(t),ct(xw,t)) possibly distinct roots yes yes 
f(t,c,(xw,t));f(t,Q(t),c,(xw,t)) possibly distinct roots yes yes 

f(c(xw,t),ct(xw,t)) 
f(Q(t),c(xw,t),ct(xw,t)) 

possibly distinct roots yes yes 

f(t,c(xw,t),Ct(xw,t)) 
f(t,Q(t),c(xw,t),c,(xw,t)) 

possibly distinct roots yes yes 

Any of the four cases stated in Table 2 could possibly provide roots for equation 

(95) and produce a candidate pumping schedule, leading to an optimal solution for the 

optimization problem. Thus, when the time derivative of the concentration is considered 

in the decision making process for a management objective, the possibility exists that 

pulsed pumping could indeed provide an optimal pumping schedule. However, further 

analysis of these classes of functional depends on the nature of the integrand of the 

objective functional (24). 

7.1.3 Classes of Interest. So for, we have examined the objective functional (24) 

in the general form by considering all possible combinations of the variables t, Q(t), 

c(xw,t), and ct(xw,t) contained in its argument list. We have seen in the previous two 

subsections that functionals which depend on the pumping rate and the contaminant 

concentration at the extraction well provide general classes which could yield a distinct 

solution for an optimal pulsed pumping schedule, as well as meeting desired management 

objectives.  Additionally, when we consider the possibility of the time derivative of the 
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concentration as part of the management objective, we find that all combinations could 

yield distinct roots and lead to an optimal pulsed pumping schedule. 

Further analysis of any of the equations (184), (187), (188), (189), or (190) 

requires some assumptions about the specific nature of the integrand f. First, we should 

consider what variables are likely to be present in any particular management objective. 

Also, we need to assume how the variables will occur in the objective, e.g. as products of 

polynomials, in exponentials, in the denominator of the integrand, etc. With these 

limiting assumptions, we can further analyze the equations which produce an optimal 

schedule, and demonstrate the usefulness of this optimization technique through the use 

of the simulation model SUTRA. 

In the next section of this chapter, we will present specific examples from two 

general classes and demonstrate how to determine a candidate pulsed pumping schedule. 

First, we examine objective functionals which depend on time, the pumping rate, and the 

contaminant concentration at the extraction well. We will assume that the integrand of 

the functional is analytic in c(s,t), leading to a power series representation for 

f(t,Q(t),c(s,t)), where the coefficients of the powers of c(s,t) depend on t and Q(t). Next, 

we add the time derivative of the concentration to the integrand and make a simplifying 

assumption for the relationship between the first and second time derivatives of the 

concentration on successive intervals, leading to another example of the technique. 
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7.2      Examples 

Suppose the integrand of (24) is independent of the time derivative of the 

concentration and is an analytic function in the concentration. Then we can write 

f(t,Q,c) = Sak(t,Q)ck, (191) 
k=0 

where the coefficients ak might depend upon time and the pumping rate. Substituting this 

representation for the integrand into the functional in (24), equation (95) becomes 

r 
[f-eyx=Xw;;;o=|Sak(t,Q(t))ck(xw,t)-c(xw,t)Sak(t,Q(t))kck-1(xw,t) 

L k=0 k=0 

t,-0 
t,+0 

a0(t,Q(t)) + £ak(t,Q(t))(l-k)ck(xw,t) 
k=2 

1,-0 

tj+0 = 0 (192) 

for all i = 1, 2, ... n-1. From (192), we see that if we wish to represent the integrand of 

(24) as a product of a polynomial function in the concentration and any function which 

depends on the time and the pumping rate, then the concentration polynomial must have 

degree greater than one. That is, if we choose to let 

f(t,Q,c) = a0(t,Q) + a1(t,Q)c 

then equation (192) becomes 

P-efJ ;'«=a0(t,Q(t)) 
tj-0 
tj+0 (193) 
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for all i = 1, 2,... n-1. Table 1 indicates that roots of (193) may be found, but are unlikely 

to lead to optimal solutions for any interesting management objectives. The following 

example illustrates a common management goal in this category of functionals. This 

particular example has received a large amount of attention in the literature (Voudrias & 

Yea, 1994; Rabideau & Miller, 1994; Harvey et al., 1994). We find that because of the 

linearity of the concentration term in the proposed objective functional, pulsed pumping 

will not afford an optimal pumping schedule. 

Example 1: Maximize the amount of contaminant mass removed while minimizing 

the amount of water mass removed over a finite time interval. This problem can be 

formalized as a minimization problem: 

Minimize J[Q,c] = (1 - z)J['' (_ pwQ(t)ds,dt-zj^' Jl. Q(t)c(s,Ods.dt, (194) 

constrained by the appropriate conditions depicted by (25) - (27), where pw is the density 

of the water [M/L3] and z is a weighting factor [dimensionless] (0 < z < 1) introduced 

because of the large difference between mass of contaminant and mass of fluid pumped 

out of the aquifer (Hartman, 1994). For the functional in (194), we have 

f(t,Q,c) = (l-z)pwQ-zQc, 

and equation (192) becomes 

P-«f.l 
ti-0 t,-o 
;£ = (I-Z)PWQ(O;£=O (195) 
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for all i = 1, 2, ... n-1. Obviously, equation (195) can never have roots and a candidate 

optimal pulsed pumping schedule does not exist, and thus all that is left is to decide 

whether the pump is always on or always off. If the pump is always off, then Q(t) = 0, 

and equation (194) becomes J[0,c] = 0. If the pump is always on, then the decision to 

pump is determined by the weighting factor z, in equation (194). That is, let Q(t) = QON 

for all time, then equation (194) becomes 

J[QoN'C] = QoNtl 
z   ft, 

O-^Pw-—I c(xw, t    o lf 

t)dt (196) 

and the sign of (196) determines the status of the pump. If J[QON,C] in equation (196) is 

less than zero, then J[QON,C] represents a minimum for the functional and the decision is 

to pump continuously. If J[QON,C] is greater than zero, then J[0,c] = 0 represents a 

minimum for the functional and the decision is to leave the pump idle. Closer 

examination of (194) and (196) shows that as z approaches the value 1, a greater 

emphasis is placed on maximizing the mass of contaminant removed and the decision is 

to pump continuously. If z approaches zero, then the emphasis is placed on minimizing 

the mass of water removed and the decision is not to pump. □ 

A number of research efforts (Voudrias & Yea, 1994; Rabideau & Miller, 1994; 

Harvey et al., 1994) have sought to optimize remediation goals which could be described 

by the objective functional in Example 1. Their studies included numerous runs of 

simulations that tested the theory of pulsed pumping by using "best-guess" techniques to 

determine an optimal pulsed pumping schedule.   As was demonstrated in Example 1, 
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these investigations could not find an optimal pulsed pumping schedule, because a 

schedule which optimizes the functional in (194) does not exist. Comparison of these 

studies with the current work illustrates the power of this variational approach. By setting 

the problem as the optimization of an objective functional, rigorous results are obtained 

which obviate the need for trial-and-error searches of solution spaces. This approach also 

encourages examination of what features are truly desired in the management functional. 

The next example illustrates that the functional in Example 1, which accurately represents 

the management goal most prevalent in the literature, may not, in fact, be the best choice. 

Example 1 illustrates the need to alter the nature of the objective functional, while 

maintaining a meaningful objective, to produce an optimal pulsed pumping schedule. 

Tables 1 and 2 indicate that a pulsed pumping schedule could be derived which optimizes 

a meaningful objective, either by introduction of higher degree terms in the concentration 

(for functionals of the type represented by equation (191)) or by introduction of 

information about the time derivative of the concentration at the extraction well, The 

next two examples examine both of these possibilities. 

The next example demonstrates how a functional whose integrand has a factor 

that is a polynomial in the concentration with degree 3 yields a candidate pulsed pumping 

schedule, which, in turn, is further tested by the necessary and sufficient conditions of the 

second variation. The concentration information at the extraction well is provided by the 

modified SUTRA model which incorporates rate-limited sorption (Caspers, 1994). 

Before we pursue this example, we define a function referred to as the essential 

concentration function. 
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Definition 7. Let es represent the acceptable drinking water standard of a contaminant 

concentration within a solute. The essential concentration function, 5(c), is defined as 

any function of the concentration at the extraction well, such that £(c) is positive for all 

concentrations above cs (referred to as essential concentrations), and S(c) is negative for 

all concentrations below cs (referred to as non-essential concentrations). Further, 

g(cs) =£(0) = 0 and the units of £(c) are contaminant mass per volume of the water 

phase [M/L ]. See Figure 12 for an example of 5(c). 

By using the essential concentration function, we could easily define an objective 

functional which maximizes the (time) averaged essential concentration removed at the 

extraction well, but also minimizes the (time) averaged non-essential concentration 

removed. That is, we maximize the high concentrations, and minimize the low 

concentrations. Notice, in example 1, the essential concentration function was £(c) = c, 

and thus all concentrations are essential which implies that the drinking water standard is 

Figure 12. An example of an essential concentration function. 
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es = 0. For most contaminated aquifers, a goal which returns the aquifer to a pristine 

condition is neither feasible nor practical, and as such, the objective of Example 1 is not 

realistic. 

Example 2 applies the definition of essential concentration to develop a pulsed 

pumping schedule for a more realizable objective functional. Example 3 pursues another 

possibility for the objective functional by introducing time derivative information for the 

concentration into the objective. 

Example 2: Maximize the essential mass removed while minimizing the non- 

essential mass removed and the total mass of the water removed, where the essential 

mass function is determined by some prescribed drinking water standard, cs > 0. Before 

we state our specific optimization problem, we first observe that our definition of 

essential concentration makes the integrand of J[Q,c] independent of the time derivative 

of the concentration, and the objective functional has the form of equation (183). 

Additionally, the essential concentration function was chosen such that equation (184) 

produced a non-trivial pulsed pumping schedule which meets the objectives of this 

example. 

In the analysis of this problem, we find that Theorems 9 and 10 must be modified 

to reflect the independence of the time derivative of the concentration at the well. First, 

notice the terms in (125) can be written as 

P(i) (t) = 0, Rci) (t) = ^fcc[t,Q
(i) (t),c(i) (xw, t)], 
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(i)      1 \c * i     I ti—o mli =-r[fcctJx=x |,;+0, rrij2 = m2 ■ = 2~fcL=J'i+°' and m£=0, 

so that the second variation of the Lagrangian becomes 

524Q,cA;Ati)h,^] = l,'R(t)h2dt + X[Ati    6c, ]• 
i=l ,m2?      0 

At, 

5c; 

and thus, the statement in the hypothesis of both Theorems 9 and 10 that P(t) > 0 for all t 

becomes R(t) > 0 over the same time interval. Notice also, the matrix Mw above will 

always have a negative determinant, which makes it impossible for M(l) to be a 

nonnegative definite matrix. Thus, the product A,T • M(l)A, will always be nonpositive. 

This hinders the analysis if we seek to minimize a functional, since we are no longer 

assured that the second variation is positive definite, as in Theorem 9. However, if we 

seek to maximize a functional, Theorems 9 and 10 arc still usable if we use the following 

revised theorems. 

Theorem 9 (REVISED).   The quadratic functional 

A[h,At,,8c,] = J'if'R(t)h2dt + Ä^M(i)-Ä,, 

where Aj = [At,    5c,], and 

(197) 

R(t) 
RUJ(t) 

Rl,+I,(t) 

ti-! < t < t, 

t; < t<t i+l 

such that R(t) < 0 for all t € (tu, ti) u (ti, ti+0, and M(l) is a nonpositive definite matrix 

(denoted by M(l) < 0), is a negative definite functional for all h(t) such that h(ti-i) = 0 

h(tj+i) = 0 if and only if the interval [t;-i, t;+i] contains no conjugate times to ti-i. 
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Theorem 10 (REVISED). Suppose that for some admissible functions (Q, c, X) the 

Lagrangian for the optimization problem defined by (183) and (25) - (27) satisfies the 

following conditions: 

1. The functions (Q, c, X) are an extremal, and hence the first variation of the 

Lagrangian vanishes; implying that the conditions stated in (75), (78), (81), (83), (84), 

(89), (91), and (95) are met (Note: fc = 0 in these conditions). 

2. For the functions (Q, c, X), 

R(i)(t)=|fcc[t,Q
(i)(t),c(i)(xwt)]<0 (198) 

for all te [tj_i, t;], and for all i = 1, 2,... n, and 

M(i) < 0 

for all i = 1,2,... n-1, where M(l) is given as 

(199) 

M(o=I 
2 f 

1,-0 
tj+0 

tj-0 
t,+0 

tj—0 

l,+0 

0 

and 

m (i)=--[fci   h~°<o n -   o LrcctJx=xJti+o-u. 

3. The time interval [t;.i, t,+i], contains no times which are conjugate to the time tu, 

for alii = 1, 2,... n. 

Then the functional in (183), constrained by the conditions in (25) - (27) has a maximum 

at (Q, c, X) with respect to |*|li 
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This problem can now be formalized as a maximization problem: 

Maximize J[Q,c] =  H f(t,Q(t),c(s,t))ds1dt, (200) 
0      Ij 

constrained by the appropriate conditions depicted by (25) - (27), where 

f(t,Q,c) = -(l-z)pw[Q + QL0]+zß(c)[Q + QL0] (201a) 

and 

£(c)=ri(ac)2+'ü(ac)3. (201b) 

In equations (201), pw is the density of the water [M/L3] and z is a weighting factor 

[dimensionless] (0 < z < 1) introduced because of the large difference between mass of 

contaminant and mass of fluid pumped out of the aquifer, r\ and x> arc constants which arc 

•a 

chosen to satisfy some drinking water standard for the contaminant [M/L ], a is a 

concentration scaling factor [L3/M] such that (ac) represents the scaled, dimensionless 

concentration, and QLO is a reduced pumping rate, introduced to maintain hydraulic 

control of the contaminant plume [L7T]. 

Notice, in equation (201b), the essential concentration function is a cubic 

polynomial with the coefficients of the constant term and the linear terms set to zero. The 

choice of a cubic was necessary to ensure that S(c) has a zero corresponding with the 

concentration standard, cs (see Figure 12). Further, notice that equation (201) could be 

written as 

f(t,Q,c) = [(z-l)pw + zri(ac)2+zaXac)3][Q+QLO], 
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or, alternatively as 

f(t,Q,c) = [K0 + K2(ac)2+K3(ac)3][Q+QLO], 

where K0, K2, are K3, are constants. With this representation for the integrand, we see 

that f in equation (201) is analytic in c(s,t) and thus, if the functions (Q,c,A,) are an 

extremal, they must satisfy the necessary conditions in (192). As we noted previously, 

the linear term of f vanishes in equation (192) and any constant term would become part 

of Ko above, so the choice of S(c) in (201b) is justified. Thus, the NOC of (192) becomes 

[f-cfc]x=Xw !;;? = 

{[K0 + K2(GC)
2
 +K3(ac)3]-[Q(i) +QL0] 

- c[2K2o
2c + 3K3a

3c2] • [Q(i) + QL0]}6=£(i) (202) 

-{[K0 + K2(Gc)2 + K3(ac)3].[Q(i+1)+QLO] 

- c[2K2o
2c + 3K3o

3c2] • [Q(i+1) + QLO]}£=£(i+1) = 0 

for all i = 1, 2, ... n-1, and the roots of (202) provide the candidate pulsed pumping 

schedule. Suppose the extraction pump is initially on, and we wish to find the time ti to 

turn the pump off.   Then, for this first pumping interval we must satisfy 

{[K0 + K2 (ac)2 + K3 (Gc)3] • [Q0N + QL0] - c^c + 3K3o
3c2] • [Q0N + Qj} 

(203) 
-{[K0 + K2(GC)

2
 + K3(GC)

3
] • QL0 -c^K.c^c + S^c^c2]• QL0}       = 0. 

Since c is continuous at t = tx, then c(1) = c(2) and the candidate switching time is the first 

zero of the function G(t), stated as 
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G(t) = [K0-K2(ac)2-2K3(Gc)3], (204) 

where c = c(1) (xw ,tx), and the concentration information at the well could be provided by 

any contaminant transport model which incorporates first-order, rate-limited sorption 

with the extraction well on. Notice, if we wish to find the next time to turn the pump on, 

then the zero of G(t) again provides the candidate switching time, however now the 

concentration information is provided by the model with the extraction well turned off. 

Caspers (1994) developed a modified SUTRA code which successfully 

incorporates first- and second-order diffusion models which emulate rate-limited sorption 

into a two-dimensional finite element flow and transport model. For the present example, 

Caspers' code with typical input parameters was used to generate concentration 

information at the extraction well, which was placed in a hypothetical two-dimensional, 

contaminated, sandy aquifer (Caspers, 1994:Ch 4). The first-order diffusion model was 

used with a rate constant a = 0.005 day"1. Initial contaminant was simulated by injection 

of carbon tetrachloride into the aquifer at a rate of 5 m /day, with a concentration of 

5.0 |ig/l, for a period of 100 days. Following this initial injection, the system was 

undisturbed for an additional 365 days and transient solute transport was simulated. The 

cleanup period followed, and the extraction well operated at a pumping rate of 400 

m3/day during active intervals. 

To determine the zeroes of G(t), Caspers' model was run for 200 days and 

concentration samples were taken once per day. Using these 200 discrete data points, we 

sought to find the time that the expression in (204) goes to zero. For this example, we 

used a weighting factor of z = 0.9982, concentration scaling factor of a = 10   m /kg, and 
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a water density of p. - 1000 kgta'. The essential concentration function was determined 

to meet a cleannp standard of 120 ppb (par* per billion). Notice, if we se, me essential 

concentration function to zero, we can write 

Z(C) = (CC)
2
[T\+V(GCJ\ = 0, 

j       ~^    Tf «»» ipt r = —-   we can choose 
and the zeroes of S(c)are at c = 0 and c = —.   If we let cs    ^ we 

constants r] = -1.2 and u = 0.001 to satisfy Definition 7 for a cleanup standard of cs = 120 

ppb. For these values of the constants in (201), the constants in (204) become: Ko - -1.8, 

K2 = -1.2, and K3 = 0.001 and a graph of the function G(t) is presented in Figure 13. 

From the graph in Figure 13, we see that the first time to shut off the pump occurs 

on day 83 of the first pumping interval.   With this knowledge, we ran Caspers' code 

again, but only to simulate extraction for 83 days. At the end of this simulation, the final 

-2' 
I I 
40 60 

fo W ^ "° 160 180 200 

TME(t) 

Figure 13. Plot of G(t) for 200 data points, extraction pump on. 
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concentration information serves as the initial concentration distribution for the first idle 

pumping interval. Concentration information for this idle interval is found again by using 

Caspers' code, only now the pumping rate is set to zero. Again, we sample the 

concentration at the well for 200 days and use these discrete data points to find the time 

t2, the first time to turn the pump back on (Figure 14). 

From Figure 14, we determine that the time to restart the pump occurs on day 21 

of the first idle interval. Again, we ran Caspers' code for 21 days to find the initial 

contaminant concentration distribution for the next pumping interval, and then started the 

simulation again to determine the next time to shut the pump off again. This process was 

continually repeated to determine the optimal candidate pulsed pumping schedule for the 

duration of the cleanup project. For this example, the procedure was carried out to 

determine the next pump-off and pump-on times, t3 and U, and the results are summarized 

in Table 3. 

G(t) 

2000 

1000 - 

-1000 

TIME(t) 

Figure 14. Plot of G(t) for 30 data points, extraction pump off. 
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Next, we need to demonstrate that the candidate optimal pumping schedule 

presented in Table 3 does indeed represent a maximum solution for the functional stated 

in (200) and (201). To accomplish this, we examine the term R(l)(t) of Theorem 10 

(Revised) for all te [ti, tj], and for i = 1, 2, 3, and 4, and the term M(l) for i = 1, 2, 3, and 

4, in particular the mi i terms of each matrix M(l). 

According to Theorem 10 (Revised), we need R(l)(t) to be negative on the ith 

interval for every i. For the particular functional we are considering here, the inequality 

condition in (198) becomes 

fcc[t,Q
(i)(t),c(xw,t)] = 2o2[K2+3K3(ac)]-[Q(0(t) + QLO]<0 (205) 

for all te[ti-i, tj], and for i = 1, 2, 3, and 4.   If QLO is chosen to be a small positive 

constant, then the constraint in (205) becomes 

[K,+3K3(oc)]<0 (206) 

for all te [tu, tj, and for i = 1, 2, 3, and 4. 

Table 3. 

Switching Times and Observed Concentrations (Example 2). 

Switching 
Time 

Day of 
Project 

Observed 
Concentration 

to 0 1.57 x 10"* 

ti 83 1.24 xlO"10 

t2 104 6.05 x 10"9 

t3 119 1.10xl0"lu 

U 158 6.04 x 10"9 

151 



Since the concentration at the extraction well is a continuous, monotone function 

throughout the ith interval for any i, then the inequality in (206) is satisfied throughout the 

interval if it is satisfied at the endpoints. For instance, for the first interval (i = 1) the 

inequality at the endpoints becomes 

[-1.2 + 3(0.00 l)(cc0)] = -0.726 < 0 (207a) 

and 

[-1.2 + 3(0.00 l)(ac83)] = -1.196 < 0. (207b) 

Similarly, the inequality in (206) is found to hold when i = 2, 3, and 4 as well, so that the 

only test which remains is to verify that M(l) < 0 for i = 1, 2, 3, and 4. 

Again, since we know the determinant of M(l) is always negative, then inequality 

(199) holds if the mi i term is negative or zero for each i. For example, when i = 1 

lr.i 1,-n 1 
= -7[fcc,]x=s |;i:." =--[2K2crc + 3K3a

3c2].[Q(t) + QLO]ct ^ $,    (208) m(I) 
11 o L'c-tjx_x^ |i,+» 9 

which becomes 

g> = -^[2K2 + 3K3(ac)] • [(Q0N +QL0)C; -QL0c:]|x=Xw, (209) 

where c~ and c* represent the derivative of the concentration at the extraction well just 

before and just after the status of the pump switches from on to off, respectively. 

Plugging in the value for c(xw,ti) = c83 from Table 3, and assuming c~ < 0 and c+ > 0 

(since the concentration is decreasing on interval 1, and increasing on interval 2), we find 
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that (209) is negative for the given constants. In fact, the m^ term is found to be 

negative for each i =. 1, 2, 3, and 4, and thus by Sylvester's criterion the matrix M(l) is 

nonpositive for i = 1, 2, 3, and 4. 

Returning to Theorem 9 (Revised), since R(t) is negative for all t e (tu, ti) u 

(ti, ti+i), and M(l) is a nonpositive definite matrix, then the functional A in (197) is always 

negative. Thus, A is a negative definite functional for all h(t) such that h(ti„i) = 0 and 

h(ti+i) = 0, and according to the theorem, the interval [t;.i, ti+i] contains no conjugate 

times to t;.i for every i. With this statement, we have satisfied all the conditions stated in 

Theorem 10 (Revised), and as such the pumping schedule (ti, ti, 13, t4, ...) represents an 

optimal pumping solution which maximizes the functional defined by (200) and (201), 

constrained by the appropriate conditions of (25) - (27). □ 

From Example 2, we clearly see the potential for the optimization technique 

presented in this document. The definition of the essential concentration function could 

easily be tied into a remediation cost function for a particular cleanup site. That is, we 

can think of £(c) as a penalty function that attaches a greater cost to remediating water 

which already meets a prescribed standard. Further, from this example we see that the 

conditions stated in Theorem 10 (or Revised Theorem 10) are easy to test for any 

particular functional. Finally, implementation at an operational facility could easily 

incorporate the actual concentration information, or at least the information could be 

provided by a validated numerical model (required at remediation sites by regulation) 

which accurately predicts the contaminant concentration. 
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The next example again illustrates how this optimization method can be used, 

only this example assumes the objective functional depends on the time derivative of the 

concentration at the extraction well. The idea behind Example 3 is that a remediation site 

operates more efficiently if, during the active pumping intervals, the pump withdraws 

contaminated water at a steady contaminant concentration level. Treating for a steady 

level of contaminant alleviates the need to retool the air-scrubbers at the site to handle 

wide ranges of contaminant concentrations. By minimizing the rate at which the 

contaminant concentration changes, while also minimizing the mass of the water 

withdrawn, we can assure that retooling costs will be held to a minimum. 

Example 3: Minimize the rate at which contaminant concentration is changing, 

while also minimizing the mass of contaminated water withdrawn. We state the 

optimization problem for this example as: 

Minimize: J|Q,c] = J''J f(t,Q(t),ct(s,t))ds,dt, (210) 
o   rj 

constrained by the appropriate conditions depicted by (25) - (27), where 

f(t,Q(t),ct(s,t)) = (l-z)pw[Q(t) + QLO] + z-(act)
2[Q(t) + QLO],        (211) 

where the constants in (211) are the same as those introduced in Examples 1 and 2, 

except we have used z = 0.999925 for this example and the 1/2 is introduced for 

convenience. Notice, the integrand depicted by (211) is independent of the concentration 

at the extraction well. For this particular class of functionals, equation (188) provides the 
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candidate pulsed pumping schedule. Further, the matrix M(l) of Theorem 10 reduces to 

the mf/ term for each i = 1, 2,... n-1, so that condition (174) becomes 

<=-i^£«LxJ:'--° (212) 

for alii =1,2, ...n-1. 

Suppose the functions (Q,c,A,) are an extremal for the functional in (210) and 

(211), and let Ki = (l-z)pw and K2 = - , then the necessary conditions in (188) which 
At 

generate the candidate optimal pumping schedule become 

[f-fC(ct + fCiC,6ctt)]|x=xJ;;;: =[Q(i) +QJ1K, -K2(act)
2 +2K2a

2cctt)£=£(1) 

~[Q(i+1) +Qu,](Ki -K2(act)
2 +2K2a

2cctt)6=£(i.1) =0 

for all i = 1, 2, ... n-1, and the roots of (213) provide the candidate schedule. As in the 

previous example, suppose the extraction pump is initially on, and we wish to find the 

time ti to turn the pump off. Since c is continuous at t = ti, then c(I) = c(2) and the 

candidate switching time must satisfy 

[QON + Qu>i^ -K2(cc;)2 +2K2o
2cc-J (214) 

-QLOIK, -K2(ac:)2 +2K2a
2cc;) = 0, 

where c = c(1)(xw,t!)and c~t, 6;, c+, andc* are the first and second time derivatives of 

the concentration at the extraction well, with the minus sign representing the value just 

before the pump is turned off and the plus sign representing the value just after the pump 
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is turned off. As we stated earlier (sub-section 7.1.2), the rebound effects (expected when 

rate-limited sorption is evident within an aquifer) lead to discontinuities in the first and 

second time derivatives of the concentration. Previous results (Caspers, 1994:Ch 4) show 

the concentration will rebound as seen in Figure 15, and as such, we assume 

c~ <0, c~ >0,andc* >0, c* <0. Additionally, since we have no knowledge of the 

exact magnitudes of the derivative terms after the pump is switched (without actually 

switching it), we make the following assumptions: C*=K,.C~ and c* = K2C~, where 

Kj and K2 are unknown negative constants, which could be approximated by running 

numerous simulations to predict the rate of rebound. For the purpose of this illustration, 

we choose these constants arbitrarily to be: K, = -4.5 and Kj = -2, which imply that the 

concentration is increasing rapidly the instant the pump is turned off and that the 

concavity has changed as depicted in Figure 15. With these assumptions, the candidate 

pulsed pumping schedule is derived from the zeroes of H(t), given as 

H(t) = A1+A2(ocl)  +A3(crcctt), (215) 

c(xw,t) 

ti t2 t3 U t 

Figure 15. Tailing and rebound effects seen at the extraction well. 
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where c = c(1)(xw,t1), ct =c~, ctt = c~, and the constants Ai, A2, and A3 in (215) are 

combinations of the constants used in this example, produced by (214). The values of 

Ki = 0.075, K2 = 0.5, QON = 400, and QLo = 20 produced the constants Ai = 30, 

A2 = -103, and A3 = 430 in equation (215). 

To determine the zeroes of H(t) in (215), we again ran Caspers' model for 200 

days and concentration samples were taken once per day. Using these 200 discrete data 

points, we seek to find the first time H(t) goes to zero. Notice, for this example we need 

not only the concentration information, but also the first and second time derivative 

information as well. Numerical differentiation with a three-point formula was used to 

approximate the value of the first derivative at each sample point. The formula used 

current concentration information along with the information from two successive 

samples to make the approximation. Similarly, the second derivative was approximated 

using a three-point formula in conjunction with the first derivative approximations at 

each data point. A graph of H(t) is presented in Figure 16. 

From the graph in Figure 16, we see that the first time to shut off the pump occurs 

on day 18 of the first pumping interval. Continuing this procedure, as in Example 2, the 

information from day 18 serves as the initial data for the first pump-off interval. Figure 

17 presents a graph of H(t) where discrete concentration information comes from 

Caspers' code with the pumping rate set to zero, and we see the first time to resume 

pumping occurs on day 13 of the idle pumping interval. This process was continually 

repeated to determine the optimal candidate pulsed pumping schedule for the duration of 
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Figure 16. Plot of H(t) for 25 data points, extraction pump on. 

cleanup project.  For this example, the procedure was carried out to determine the next 

pump-off and pump-on times, t3 and U, and the results are summarized in Table 4. 

Next, we need to demonstrate that the candidate optimal pumping schedule 

presented in Table 4 does indeed represent a minimum solution for the functional stated 

H(t) 

-T10' 12 14 

Figure 17. Plot of H(t) for 13 data points, extraction pump off. 
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Table 4. 

Switching Times and Observed Concentrations (Example 3). 

Switching 
Time 

Day of 
Project 

Observed 
Concentration 

to 0 1.57 x 10"* 

ti 18 3.33 x 10-10 

t2 31 1.15 x 10"" 

t3 45 2.21 x 10-1U 

U 61 8.94 x 10"y 

in (210) and (211). To accomplish this, we need to examine the term P(l)(t) of (173) for 

all te [ti-i, ti], and for i = 1, 2, 3, and 4, and the m^ term for i = 1, 2, 3, and 4. 

According to Theorem 10, we need P(l)(t) to be negative on the ith interval for 

every i. For the particular functional we are considering here, condition (173) becomes 

fCiCi[t,Q(i)(t),ct(xw,t)] = o2[Q(i)(t) + QLO]>0 (216) 

for all te [ti-i, ti], and for i = 1, 2, 3, and 4. For the constants chosen in this example, the 

constraint in (216) is met for any choice of i = 1, 2, ... n-1. Since the inequality in (216) 

holds for every interval, the only test which remains is to verify that the inequality in 

(212) holds for i = 1,2, 3, and 4. For example, when i = 1 

m(1) =■ 
lr~ O2 

[fc,att]     i;:=-TetejQ(t)+Qj 
t,-0 
t,+0 ' (217) 

which becomes 

<i'  = -^rfce«[Q0N + QLO] - QLoCtöt} X=XW 
(218) 
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For the choice of c* = Kj6t and c* = K2C~ , where K; = -4.5 and K2 = -2, (218) reduces to 

< =-yc;6;[QON-8.QLO]|x=Xw, (219) 

which is always positive, since c~ and c~ are always opposite in sign (Figure 15) and QON 

is greater than 8-QLO- Thus, the mft term is positive for each i = 1, 2, ... n-1, so the 

matrix M(l) is nonnegative for any i = 1, 2, 3, and 4. 

Returning to Theorem 9, since P(t) is positive for all t e (tj.i, t;) u (tj, ti+i), and 

M(l) is a nonnegative definite matrix, then the functional A in (162) is always positive. 

Thus, A is a positive definite functional for all h(t) such that h(ti_i) = h(ti+i) = 0, and 

according to the theorem, the interval [tj.i, t;+i] contains no conjugate times to Vi for 

every i. With this statement, we have satisfied all the conditions stated in Theorem 10, 

and as such the pumping schedule (t|, t2, t3, t4,...) represents an optimal pumping solution 

which minimizes the functional defined by (210) and (211), constrained by the 

appropriate conditions of (25) - (27). D 

7.3      Summary 

This chapter identified general classes of functionals that a remediation site 

manager might wish to optimize through the use of a pulsed pumping schedule. Several 

classes were found to either have no optimal pulsed pumping solution, or they could not 

possibly produce any interesting management objectives. Various other classes were 

identified as potential candidates for optimization through pulsed scheduling. Necessary 

optimality  conditions  which  produce  a  candidate  pulsed  pumping  schedule  were 
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presented for these classes, and several examples served to illustrate the usefulness of the 

method presented in this document. 

The first example depicts a common management goal that a number of 

researchers have sought to optimize through the use of pulsed pumping. The example 

clearly demonstrates that an optimal pulsed pumping schedule for the functional in (194) 

does not exist, and as such, a decision must be made to either pump continually or to not 

pump at all. Further, this example provides a rigorous proof that pulsed pumping will not 

maximize remediation goals which reflect an efficiency criteria of contaminant mass 

removed per volume of water extracted. This conclusion motivated an investigation of 

the objective functional, which led to new insight into the optimization problem, 

illustrated in Example 2. 

Example 2 demonstrates how the formulation of a realistic objective functional is 

a key component of the optimization of pump-and-treat operations. The functional in this 

example suggests that the efforts of previous researchers sought to realize unattainable 

goals. By adjusting the management criteria to reflect a realistic cleanup goal, a 

functional was developed and the variational theory was applied, resulting in an optimal 

pulsed pumping schedule. The schedule was further tested, and we concluded that the 

candidate schedule was met the objective criteria of the example. 

The final example presented yet another twist on the development of realistic 

objectives. Again, a candidate pulsed pumping schedule was derived and tested and 

further illustrated the usefulness and flexibility of the variational approach. 
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The examples presented in this chapter were chosen primarily to illustrate how to 

use the optimization technique presented in this research. However, through an 

investigation of the management objective functional, we have depicted the importance of 

developing attainable management objectives. At the same time, we have demonstrated 

the utility of this technique and its potential as a cost saving tool for use at pump-and- 

treat remediation sites. 
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VIII. Conclusions and Recommendations 

8.1       Overview 

The remediation and containment of contaminated groundwater remains a 

persistent ecological problem, and will continue to be an environmental issue in the 

foreseeable future. Current pump-and-treat methods appear to be most effective as a 

containment tool, though complete restoration of a contaminated aquifer by use of this 

technique does not appear feasible. In fact, pump-and-treat water extraction has failed to 

fully remediate any contaminated aquifer to health-based standards. However, with the 

prospect of operating a large number of these cleanup facilities for the next 50 to 100 

years, research into minimizing operating costs has received a great deal of attention. The 

research presented in this dissertation employs calculus of variations techniques, seeking 

to minimize a generic management objective functional by finding the optimal switching 

times for a schedule of pulsed pumping operations. 

The literature reviewed supports pulsed pumping as a method to minimize costs at 

pump-and-treat cleanup sites by reducing the volume of contaminated water to be treated, 

especially at sites where rate-limited sorption is evident. However, most of the 

investigations of pulsed pumping were conducted using arbitrary or trial-and-error 

methods to determine a pulsed schedule, and only Hartman (1994) sought to use an 

analytical optimization technique to find an optimal pulsed pumping solution. Hartman's 

work was a very restricted component of a much more complex problem, and the present 
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research used a similar technique, but on a more general setting which led to a more 

thorough analysis of the problem. 

8.2       Summary of Findings 

The goal of this research was to develop necessary and sufficient conditions for an 

optimal pulsed pumping schedule in order to minimize a generic management objective 

functional, constrained by the physical properties of the given model. The Lagrangian, 

developed in Chapter in, combined the objective functional with the constraints 

represented by the equations for advective-dispersive contaminant transport, coupled with 

the first-order rate-limited sorption equation. Specifically, a calculus of variations 

approach was applied to the Lagrangian, resulting in conditions which must be met by 

any pulsed pumping schedule which minimizes the objective. 

This variational method resulted in a set of necessary and sufficient conditions 

that, when combined with concentration information, provided a rigorous means of 

finding optimal pulsed pumping solutions. The approach incorporated a very general 

functional that allowed maximum flexibility in specifying management objectives. 

Examples 2 and 3 illustrated how a properly chosen objective could be translated into a 

realistic functional. This functional, in turn, could be transformed into manageable 

conditions using the theorems developed in earlier chapters. This coupling of 

management input with the mathematical rigor developed in this document is a major 

asset to the work. The following is a list of specific contributions produced through the 

course of this research: 
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1. Chapter IV applied the theory of the first variation of the Lagrangian, and developed a 

necessary conditions theorem which served to establish a candidate pulsed pumping 

schedule. This candidate schedule depends on the concentration and its time 

derivatives at the well, but not on the Lagrange multiplier, which was introduced in 

equation (37). Theorem 6 must be satisfied by any pulsed pumping schedule that 

minimizes the functional and constraints presented in Chapter III. 

2. Chapter V applied the theory of the second variation of the Lagrangian and developed 

a necessary conditions theorem which assured a minimal solution for the optimization 

problem, provided the necessary conditions of Chapter IV are met. Additionally, 

these necessary conditions served to motivate the theorems that provided sufficiency 

for a minimum, presented in Chapter VI. 

3. Chapter VI developed the proofs of two theorems which provide an exhaustive list of 

necessary and sufficient conditions, which if met, guarantee a minimal solution to the 

optimization problem presented in Chapter III. These conditions can be used as tests 

for any particular objective functional to determine the validity of employing a pulsed 

schedule of operation. 

4. Chapter VII served to demonstrate how the tests, developed through the analysis of 

the previous three chapters, can be employed in conjunction with discrete 

concentration information at the extraction well (provided by any numerical model 

which incorporates first-order rate-limited sorption). Additionally, the examples 

highlighted the simple use of these conditions that at first glance appear difficult to 

manage. While the examples in Chapter VII were designed to demonstrate the utility 
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of the method, two significant results emerged from the investigation. Example 1 

puts to rest an argument that has occupied investigators for some time. Several 

authors have repeatedly sought to demonstrate either the utility or futility of pulsed 

pumping in a rate-limited sorption environment. Their investigations have amounted 

to searches of the solution space of pumping schedules, some of which have 

numbered in the tens of thousands (Harvey, et al., 1994). Example 1 provided 

rigorous proof for the first time that pulsed pumping will not maximize the benefit 

when the criteria for efficiency is contaminant mass removed per volume of water 

pumped. Example 2 also provided new insight into the problem of optimizing pump- 

and-treat remediation. In this example, the formulation of the objective functional 

emerged as a key factor in the optimization problem. The functional in this example 

suggested that previous researchers may have been looking at the wrong remediation 

goal. Restoration to pristine aquifer conditions is not realistically achievable. The 

generality of the results developed in this research allowed for exploration of different 

management objectives, and Examples 2 and 3 suggested new approaches to 

establishing cleanup objectives. 

8.3      Recommendations 

This research has provided the mathematical analysis for establishing pulsed 

pumping schedules for use at existing pump-and-treat facilities, where the contaminant 

transport is effected by rate-limited sorption. Some simplifying assumptions were made 

to facilitate the analysis and illustrate the use of tests presented in Chapter VI. 
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Recommendations for further research are directed toward eliminating these assumptions. 

Specifically, continuation of this research should focus on the following areas: 

1. A more general approach to modeling rate-limited sorption should be pursued. In this 

research, a first-order model was assumed early on, since the majority of production 

codes in use assume a first-order model for desorption of contaminant from less 

mobile regions. Further generalizing the sorption model (i.e., second-order models 

incorporating diffusion, mixed models, etc.) would make the analysis more usable for 

attaining management objectives at a greater variety of remediation sites. As stated in 

Chapter VII, the examples were used primarily to demonstrate the potential of the 

optimization technique presented in this document. However, two significant results 

documented above were a side benefit of these examples. Example 2 clearly 

demonstrated the impact of choosing a functional with realistic physical significance. 

Further studies should pursue the development of appropriate functionals for 

optimizing pump-and-trcat remediation. This effort should be a collaboration 

between hydrologists, environmental engineers, and applied mathematicians 

employing the theory developed in this document to quickly demonstrate the utility of 

each functional. 

2. In Examples 2 and 3, a numerical approximation for the first and second time 

derivatives of the concentration was used to illustrate the method. Also, a simplifying 

assumption was made about the relationship between the derivatives before and after 

the status of the pump switches. In practice, we would need a better approximation 

for these terms and a better way to predict their behavior immediately after the pump 
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changes status. Finding an analytical solution for the first time derivative of the 

concentration at the well would be a logical next step. Specifically, one could prove 

that there exists some function \|/(t,c) such that cf+1) (t,xw) = \|/(t,c(i) (t,xw)), and then 

this approximation would become exact. 

3. Implementing this procedure using data from an extraction well at an actual treatment 

site would also be appropriate. 

4. Move the monitoring location away from the extraction point, and possibly several 

different monitoring locations. 

5. Allow for several extraction wells, where one pumping schedule might depend on the 

other pumps. 

6. Add objective functional to J[Q,c] that relate to contaminant containment, to 

determine how one should pump so that contaminant is contained, and at the same 

time, remediation is optimal. 
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